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FORCESPRO: REAL-TIME MPC OPTIMIZATION

HOW

• Deterministic mathematical approach

(numerical optimization)

• Based on physical models

• Automatic generation of efficient code

WHAT

• Automated specifications-to-software 

(SaaS)

• User defines the problem and auto-

coder generates a tailored, 

embeddable mathematical algorithm

Problem 

Definition

Real-time SW

Mathematical

Description

Auto-coder for 

Optimization

Tailored Math 

Algorithm

WHERE (APPLICATIONS)

• Fast dynamics

• Limited computation

• Fully autonomous systems

• Any HW platform
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CUSTOM CODE GENERATION

GOAL: Apply reliable, optimization-based, embedded control in milliseconds to greatly improve performance!

Actual PlantProblem Definition

?
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CUSTOM CODE GENERATION

Actual PlantProblem Definition Embedded Platform

GOAL: Apply reliable, optimization-based, embedded control in milliseconds to greatly improve performance!

MPC Feedback

Physical SystemUser Input
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CUSTOM CODE GENERATION

Actual PlantProblem Definition Embedded Platform

GOAL: Apply reliable, optimization-based, embedded control in milliseconds to greatly improve performance!

MPC Feedback

Fit method

to problem

Exploit problem

structure

Tailor code

to platform

Server

Physical SystemUser Input

ACC Workshop on Real time NMPC – From Fundamentals to Industrial Applications, June 7, 2022, Copyright (C) Embotech AG



CUSTOM CODE GENERATION

Actual PlantProblem Definition Embedded Platform
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WORKSHOP OBJECTIVE

Actual PlantProblem Definition Embedded Platform

How to implement your mathematical problem in FORCESPRO and obtain deployable solver in C code?

MPC Feedback

Tailored Numerical Algorithm Auto-Coder

Physical SystemUser Input Custom Solver Generator
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TAILOR CODE TO

HARDWARE PLATFORM

EXPLOIT PROBLEM

STRUCTURE & PROPERTIES

FORCESPRO CODE WORKFLOW

FIT NUMERICAL METHOD TO

OPTIMIZATION PROBLEM

• Identifying key numerical properties

• Understanding problem complexity

(problem size, linearity, convexity)

• Selecting appropriate solver type

• Sparsity / structure

• Numerical conditioning

• Initial guess availability / warm start

• Number and cost of iterations

• Optimizing code for target platform

• Memory size and allocation

• Average / maximum runtime

• Parallelization aspects
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FORCESPRO CODE WORKFLOW

FIT NUMERICAL METHOD TO

OPTIMIZATION PROBLEM

• Identifying key numerical properties

• Understanding problem complexity

(problem size, linearity, convexity)

• Selecting appropriate solver type

"Embotech: Numerical solution algorithms"

More details on YouTube
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https://www.youtube.com/watch?v=mDt8JMrsMhs


NUMERICAL PROBLEM TYPES

Linear Programs

Quadratic Programs

Semidefinite Programs

Convex Problems Non-Convex Problems

Integer Programs

Linear MPC Nonlinear MPC
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NUMERICAL PROBLEM TYPES

Linear Programs

Quadratic Programs

Semidefinite Programs

Convex Problems

Linear MPC
LP general form:minimize𝑧∈ℝ𝑛 𝑐𝑇𝑧subject to 𝐷𝑧 ≤ 𝑑
Properties:

• Known since 1940s (Simplex)

• Can be solved very efficiently

• Main challenges may arise from 

degenerate solutions
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NUMERICAL PROBLEM TYPES

Linear Programs

Quadratic Programs

Semidefinite Programs

Convex Problems

Linear MPC
Convex QP general form:

minimize𝑧∈ℝ𝑛 12 𝑧𝑇𝐻𝑧 + 𝑔𝑇𝑧subject to 𝐶𝑧 = 𝑐𝐷𝑧 ≤ 𝑑
with H positive semidefinite

Properties:

• Discretized linear MPC problems are 

actually QP problems

• Can be solved very efficiently

• Some algorithms require H to be 

positive definite or D = [Id -Id]
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NUMERICAL PROBLEM TYPES

Linear Programs

Quadratic Programs

Semidefinite Programs

Convex Problems

Linear MPC
SDP general form:

minimize𝑧∈ℝ𝑛 12 𝑧𝑇𝐻𝑧 + 𝑔𝑇𝑧subject to 𝐶𝑧 = 𝑐𝑏𝑇𝑧 ≼ 𝑑
Properties:

• Linear inequality constraints are 

replaced by semidefinite constraints

• Special cases of conic programs

• Notable subclass: SOCP𝐷𝑧 + 𝑑 2 ≼ 𝑒𝑇𝑧 + 𝑟
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NUMERICAL PROBLEM TYPES

Linear Programs

Quadratic Programs

Semidefinite Programs

Convex Problems

Linear MPC
CP general form:minimize𝑧∈ℝ𝑛 𝑓(𝑧)subject to 𝐶𝑧 = 𝑐𝑧 ∈ Ω

with f and  convex

Properties:

• Like for every convex problem, 

each local solution is also a global one

• Comprises various problem types, e.g., 

QCQP or SDP

ACC Workshop on Real time NMPC – From Fundamentals to Industrial Applications, June 7, 2022, Copyright (C) Embotech AG



NUMERICAL PROBLEM TYPES

Non-Convex Problems

Integer Programs

Nonlinear MPC
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NUMERICAL PROBLEM TYPES

Non-Convex Problems

Integer Programs

Nonlinear MPC

NLP general form: minimize𝑧∈ℝ𝑛 𝑓(𝑧)subject to 𝑐 𝑧 = 0𝑑 𝑧 ≤ 0
with continuously differentiable functions f, c, d

Properties:

• May have many local optima

• Under some conditions, a local minima can be found 

efficiently

• E.g., nonlinear MPC problems with continuous inputs
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NUMERICAL PROBLEM TYPES

Non-Convex Problems

Integer Programs

Nonlinear MPC

MINLP general form:minimize𝑧∈ℝ𝑛𝑐×ℝ𝑛𝑖 𝑓(𝑧)subject to 𝑐 𝑧 = 0𝑑 𝑧 ≤ 0
with z partly integer-valued

Properties:

• Discrete decision variables make MINLP 

problems very tough to solve

• Good heuristics needed to solve them 

efficiently

• E.g., nonlinear MPC problems with (partly) 

discrete inputs
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OPTIMIZATION ALGORITHMS: QP

ACTIVE-SET METHODS

minimize𝑧∈ℝ𝑛 12 𝑧𝑇𝐻𝑧 + 𝑔𝑇𝑧subject to 𝐶𝑧 = 𝑐𝐷𝑧 ≤ 𝑑
Solving QP would be straight-forward if one knew which 

inequalities hold with equality (a.k.a. active set)

Equality constrained QP problem is equivalent to solving a single 

linear system. At each iteration: 

• Guess a working set of active inequalities

• Solve linear system to check whether it is optimal

• If not, update working set and try again

Pros / Cons: 

+ Efficient to warm-start 

- No theoretical runtime

guarantees

- Difficult to parallelize

Numerical properties:

• Performs many cheap 

iterations

• Efficient for dense QP 

problems (state elimination)

INTERIOR-POINT METHODS

Inequality constraints make QP problems difficult, instead solve

minimize𝑧∈ℝ𝑛 12 𝑧𝑇𝐻𝑧 + 𝑔𝑇𝑧 + 𝜅 ∙ 𝜙 𝑧subject to 𝐶𝑧 = 𝑐
with 𝜅 > 0 and e.g. 𝜙 𝑧 ≝ −෍log 𝐷𝑖𝑧 − 𝑑𝑖
At each iteration: 

• Solve resulting convex problem for current 𝜅 using Newton’s 
method working set of active inequalities

• Decrease 𝜅 towards 0 and repeat

Pros / Cons: 

+ Theoretical runtime guarantee 

- Can be parallelized to some

extent

- Warm-starting not effective

Numerical properties:

• Performs few rather 

expensive iterations

• Most efficient for sparse QP 

problems
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OPTIMIZATION ALGORITHMS: CP 

EXTENSIONS TO LINEAR MPC

Linear MPC problems remain convex if:

• Quadratic objective function is replaced by a general convex 

one

• Polytopic constraints are replaced by ones describing any

convex feasible set, e.g. convex quadratic ones 𝑧𝑇𝑄𝑧 + 𝐿𝑇𝑧 ≤ 𝑟, 

with 𝑄 being positive definite (QCQP)

On the contrary, making the dynamic model nonlinear almost 

always yields a non-convex optimization problem

OTHER NOTABLE PROBLEM TYPES

• Second-order cone programming (SOCP)

• Semi-definite programming (SDP)

SOLUTION ALGORITHMS

Interior-point methods for solving QP problems can be naturally 

extended to efficiently solve:

• QCQP problems

• SOCP problems

• SDP problems

Active-set methods

• Tailored to LP and QP problems and cannot solve general 

convex problems natively

• Can solve convex problems when combined with SQP methods 

for general nonlinear programming
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OPTIMIZATION ALGORITHMS: NLP 

INTERIOR-POINT METHODS

Use Newton‘s method to find a point that satisfies the relaxed first-

order necessary KKT optimality conditions of the NLP:

• ∇𝑧ℒ 𝑧𝑘, 𝜆𝑘, 𝜇𝑘 = 0𝑐 𝑧𝑘 = 0𝑑 𝑧𝑘 + 𝑠𝑘 = 0𝜇𝑘𝑇𝑑 𝑧𝑘 + 𝜅𝟏 = 0𝜇𝑘≥ 0, 𝑠𝑘 ≥ 0
• Starting from initial guess 𝑤0 compute 𝑤𝑖+1 = 𝑤𝑖 − ∇𝑅 𝑤𝑖 −1 ∙ 𝑅 𝑤𝑖
• Follow primal-dual central path to solution by reducing 𝜅𝑧𝑘, 𝜆𝑘, 𝜇𝑘, 𝑠𝑘 | 𝑅 𝑧𝑘, 𝜆𝑘, 𝜇𝑘 , 𝑠𝑘 = 0

SEQUENTIAL QUADRATIC PROGRAMING

Use Newton‘s method to find a point that satisfies the first-order 

necessary KKT optimality conditions of the NLP by solving a 

sequence of QP problems:

• 𝑄𝑃 𝑤𝑖 : minimize𝑧∈ℝ𝑛 12 𝑧 − 𝑧𝑖 𝑇𝐻 𝑧 − 𝑧𝑖 + 𝑔𝑇 𝑧 − 𝑧𝑖subject to 𝑐 𝑧𝑖 + ∇𝑐 𝑧𝑖 𝑧 = 0𝑑 𝑧𝑖 + ∇𝑑 𝑧𝑖 𝑧 ≤ 0
with 𝐻 ≝ ∇𝑧2ℒ 𝑧𝑖 , 𝜆𝑖 , 𝜇𝑖 and 𝑔 ≝ ∇𝑧𝑓 𝑧𝑖 yielding dual QP solution 

vectors 𝜆∗ and 𝜇∗
• Start from initial guess 𝑤0 and obtain 𝑤𝑖+1 = 𝑧∗, 𝜆∗, 𝜇∗ by solving 𝑄𝑃 𝑤𝑖

Both approaches are Newton-type optimization methods!

≝ 𝑅 𝑧𝑘, 𝜆𝑘, 𝜇𝑘, 𝑠𝑘 ≝ 𝑅 𝑤𝑘

Real-time iterations

In a real-time context, solving full NLP may introduce high feedback 

delay. Instead, perform only one SQP iteration per sampling instant:

• Only one linearization and one QP solution

• Performs at least as good as linear MPC (corresponding to a fixed 

linearization at all instants)
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INTERIOR-POINT METHODS
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Both approaches are Newton-type optimization methods!

Hessian approximation

Computing ∇𝑅 𝑤𝑖 and 𝐻 requires expensive computation of ∇2ℒ 𝑧𝑘, 𝜆𝑘, 𝜇𝑘 .

Instead, replace the exact second-order derivative by 

• BFGS approximation

• Gauss-Newton approx. (particularly suited for tracking problems)

•

≝ 𝑅 𝑧𝑘, 𝜆𝑘, 𝜇𝑘, 𝑠𝑘 ≝ 𝑅 𝑤𝑘
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SUMMARY: IP VS SQP 

INTERIOR-POINT METHODS

• Cover all problem classes (from LP to MINLP)

• Work well on highly nonlinear problems

• Typically faster on sparse problems (as arising in MPC)

• Pretty constant number of iterations

• Limited warm-start capabilities

• Solves the full NLP and returns a locally optimal, feasible 

solution

• Less efficient in case of many constraints

SEQUENTIAL QUADRATIC PROGRAMING

• More tailored to specific problem classes

• Allow for a theoretically sound real-time variant

• Can greatly benefit from warm-starting

• Number of iterations can vary quite a lot

• May perform worse on sparse problems if combined with active-

set QP solver

• Likely to be suboptimal (and sometimes infeasible) for the 

original NLP

• More efficient in case of many constraints

ACC Workshop on Real time NMPC – From Fundamentals to Industrial Applications, June 7, 2022, Copyright (C) Embotech AG
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• Cover all problem classes (from LP to MINLP)
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• Typically faster on sparse problems (as arising in MPC)

• Pretty constant number of iterations

• Limited warm-start capabilities

• Solves the full NLP and returns a locally optimal, feasible 

solution
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SEQUENTIAL QUADRATIC PROGRAMING

• More tailored to specific problem classes

• Allow for a theoretically sound real-time variant

• Can greatly benefit from warm-starting

• Number of iterations can vary quite a lot

• May perform worse on sparse problems if combined with active-

set QP solver

• Likely to be suboptimal (and sometimes infeasible) for the 

original NLP

• More efficient in case of many constraints

REAL-TIME SQP

• May work well on mildly nonlinear problems, in particular with 

tracking objective function

• Highly efficient if applicable
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DIRECT METHODS FOR NONLINEAR MPC

STEP 2: PROBLEM DISCRETIZATION

Only evaluate state trajectory (i.e. evaluate objective functions and 

ensure constraints) at grid points via numerical integration:

• Explicit Runge-Kutta schemes (e.g. RK4)

• Implicit Runge-Kutta schemes (e.g. backward Euler)

EXPLICIT VS IMPLICIT

• Try explicit integrators first, as they are less complex than 

implicit ones

• If system dynamics are stiff (i.e. feature greatly different 

timescales), explicit schemes may simply not work

ORDER OF INTEGRATOR

• Higher order integrators (e.g. RK4) usually provide better 

trade-off between accuracy and efficiency

• Only holds if dynamics are sufficiently smooth

• If your dynamics contain discontinuities, you may need to 

resort to a very low order scheme (e.g. forward Euler)

STEP 1: CONTROL INPUT PARAMETRIZATION

Parametrize the control input trajectory, i.e. define a finite base and 

only find optimal coefficients:

• Piecewise constant control inputs: 𝑢 𝑡 = 𝑢𝑘, ∀𝑡 ∈ ሾ𝑡𝑘 , )𝑡𝑘+1
• Piecewise linear control inputs

• Piecewise splines

Key property: have base functions that are local to each stage

In order to solve continuous NLP problems on a computer, one needs to make a finite-dimensional approximation!
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• Piecewise linear control inputs

• Piecewise splines

Key property: have base functions that are local to each stage

minimize𝑢 𝑡 ∈ℝ𝑚𝑥 𝑡 ∈ℝ𝑚 න𝑡=𝑡0
𝑡0+𝑇 𝑓 𝑥 𝑡 , 𝑢 𝑡 , 𝑝 𝑡 𝑑𝑡subject to 𝑥 𝑡0 = 𝑥initሶ𝑥 𝑡 = 𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑝 𝑡𝑥 𝑡0 + 𝑇 = 𝑥final𝑥 𝑡 ≤ 𝑥 𝑡 ≤ 𝑥 𝑡𝑢 𝑡 ≤ 𝑢 𝑡 ≤ 𝑢(𝑡)𝑃𝑢 𝑡 ∈ ℤℎ 𝑡 ≤ ℎ 𝑥 𝑡 , 𝑢 𝑡 , 𝑝 𝑡 ≤ ℎ 𝑡

minimize𝑧𝑘∈ℝ𝑛𝑘 ෍𝑘=1𝑁 𝑓𝑘 𝑧𝑘, 𝑝𝑘subject to 𝑧1 = 𝑧init𝐸𝑘𝑧𝑘+1 = 𝑐𝑘 𝑧𝑘, 𝑝𝑘𝑧𝑁 = 𝑧final𝑧𝑘 ≤ 𝑧𝑘 ≤ 𝑧𝑘𝑃𝑘𝑧𝑘 ∈ ℤℎ𝑘 ≤ ℎ𝑘 𝑧𝑘, 𝑝𝑘 ≤ ℎ𝑘

Transforms an infinite-dimensional MPC problem into a finite-dimensional optimization problem that can be solved efficiently!
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• If system dynamics are stiff (i.e. feature greatly different 

timescales), explicit schemes may simply not work

ORDER OF INTEGRATOR

• Higher order integrators (e.g. RK4) usually provide better 

trade-off between accuracy and efficiency

• Only holds if dynamics are sufficiently smooth

• If your dynamics contain discontinuities, you may need to 

resort to a very low order scheme (e.g. forward Euler)

STEP 1: CONTROL INPUT PARAMETRIZATION

Parametrize the control input trajectory, i.e. define a finite base and 

only find optimal coefficients:

• Piecewise constant control inputs: 𝑢 𝑡 = 𝑢𝑘, ∀𝑡 ∈ ሾ𝑡𝑘 , )𝑡𝑘+1
• Piecewise linear control inputs

• Piecewise splines

Key property: have base functions that are local to each stage

minimize𝑢 𝑡 ∈ℝ𝑚𝑥 𝑡 ∈ℝ𝑚 න𝑡=𝑡0
𝑡0+𝑇 𝑓 𝑥 𝑡 , 𝑢 𝑡 , 𝑝 𝑡 𝑑𝑡subject to 𝑥 𝑡0 = 𝑥initሶ𝑥 𝑡 = 𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑝 𝑡𝑥 𝑡0 + 𝑇 = 𝑥final𝑥 𝑡 ≤ 𝑥 𝑡 ≤ 𝑥 𝑡𝑢 𝑡 ≤ 𝑢 𝑡 ≤ 𝑢(𝑡)𝑃𝑢 𝑡 ∈ ℤℎ 𝑡 ≤ ℎ 𝑥 𝑡 , 𝑢 𝑡 , 𝑝 𝑡 ≤ ℎ 𝑡

minimize𝑧𝑘∈ℝ𝑛𝑘 ෍𝑘=1𝑁 𝑓𝑘 𝑧𝑘, 𝑝𝑘subject to 𝑧1 = 𝑧init𝐸𝑘𝑧𝑘+1 = 𝑐𝑘 𝑧𝑘, 𝑝𝑘𝑧𝑁 = 𝑧final𝑧𝑘 ≤ 𝑧𝑘 ≤ 𝑧𝑘𝑃𝑘𝑧𝑘 ∈ ℤℎ𝑘 ≤ ℎ𝑘 𝑧𝑘, 𝑝𝑘 ≤ ℎ𝑘

Transforms an infinite-dimensional MPC problem into a finite-dimensional optimization problem that can be solved efficiently!
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DIRECT METHODS FOR NONLINEAR MPC

STEP 2: PROBLEM DISCRETIZATION

Only evaluate state trajectory (i.e. evaluate objective functions and 

ensure constraints) at grid points via numerical integration:

• Explicit Runge-Kutta schemes (e.g. RK4)

• Implicit Runge-Kutta schemes (e.g. backward Euler)

EXPLICIT VS IMPLICIT

• Try explicit integrators first, as they are less complex than 

implicit ones

• If system dynamics are stiff (i.e. feature greatly different 

timescales), explicit schemes may simply not work

ORDER OF INTEGRATOR

• Higher order integrators (e.g. RK4) usually provide better 

trade-off between accuracy and efficiency

• Only holds if dynamics are sufficiently smooth

• If your dynamics contain discontinuities, you may need to 

resort to a very low order scheme (e.g. forward Euler)

STEP 1: CONTROL INPUT PARAMETRIZATION

Parametrize the control input trajectory, i.e. define a finite base and 

only find optimal coefficients:

• Piecewise constant control inputs: 𝑢 𝑡 = 𝑢𝑘, ∀𝑡 ∈ ሾ𝑡𝑘 , )𝑡𝑘+1
• Piecewise linear control inputs

• Piecewise splines

Key property: have base functions that are local to each stage

Code-generated FORCESPRO high performance ODE integration schemes provide significant improvement on embedded hardware!
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EXPLOIT PROBLEM

STRUCTURE & PROPERTIES

FORCESPRO CODE WORKFLOW

FIT NUMERICAL METHOD TO

OPTIMIZATION PROBLEM

• Identifying key numerical properties

• Understanding problem complexity

(problem size, linearity, convexity)

• Selecting appropriate solver type

• Sparsity / structure

• Numerical conditioning

• Initial guess availability / warm start

• Number and cost of iterations
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EXPLOITING PROBLEM STRUCTURE

Nonlinear MPC repeatedly solves structurally similar problems:

minimize𝑧𝑘∈ℝ𝑛𝑘 ෍𝑘=1𝑁 𝑓𝑘 𝑧𝑘, 𝑝𝑘subject to 𝑧1 = 𝑧init𝐸𝑘𝑧𝑘+1 = 𝑐𝑘 𝑧𝑘, 𝑝𝑘𝑧𝑁 = 𝑧final𝑧𝑘 ≤ 𝑧𝑘 ≤ 𝑧𝑘𝑃𝑘𝑧𝑘 ∈ ℤℎ𝑘 ≤ ℎ𝑘 𝑧𝑘, 𝑝𝑘 ≤ ℎ𝑘
Speed-up by re-using information from previous problem solutions:

• Warm-starting: Initialize solver at previous solution

• Can significantly reduce number of iterations

• Reduces average but not maximum runtime

• Code generation: Tailor internal computations

• Some computations may only need to be done once

• Others remain at least fixed in terms of dimensions

• Certain conditional statements may be avoided

Stage-wise NLMPC structure yields a specific sparsity pattern:

minimize𝑧𝑘∈ℝ𝑛𝑘 ෍𝑘=1𝑁 𝑓𝑘 𝑧𝑘, 𝑝𝑘subject to 𝑧1 = 𝑧init𝐸𝑘𝑧𝑘+1 = 𝑐𝑘 𝑧𝑘, 𝑝𝑘𝑧𝑁 = 𝑧final𝑧𝑘 ≤ 𝑧𝑘 ≤ 𝑧𝑘𝑃𝑘𝑧𝑘 ∈ ℤℎ𝑘 ≤ ℎ𝑘 𝑧𝑘, 𝑝𝑘 ≤ ℎ𝑘
Exploiting this sparsity is crucial for efficient implementation:

• State elimination: Express states through other quantities

• State trajectory is given by 𝑧init and input trajectory

• Reduces problem size, but can create unnecessary fill-in

• Direct exploitation: Keep state-related variables / constraints

• Internal linear algebra only needed to run on 

block-diagonal and block-tridiagonal matrices

• Rule of thumb: keep sparse formulation if
#𝒔𝒕𝒂𝒕𝒆𝒔#𝒊𝒏𝒑𝒖𝒕𝒔≪ #𝒔𝒕𝒂𝒈𝒆𝒔
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TAILOR CODE TO

HARDWARE PLATFORM

EXPLOIT PROBLEM

STRUCTURE & PROPERTIES

FORCESPRO CODE WORKFLOW

FIT NUMERICAL METHOD TO

OPTIMIZATION PROBLEM

• Identifying key numerical properties

• Understanding problem complexity

(problem size, linearity, convexity)

• Selecting appropriate solver type

• Sparsity / structure

• Numerical conditioning

• Initial guess availability / warm start

• Number and cost of iterations

• Optimizing code for target platform

• Memory size and allocation

• Average / maximum runtime

• Parallelization aspects
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SPEED & MEMORY SIZE

Advantages:

• Lowest computation times

• Very low memory size

• No external libraries

• Static memory allocation

• Any embedded control platform

• User-friendly interfaces

• Coding standards are complied

(MISRA-C 2012)

• Superior robustness 
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PROCESSORS & PLATFORMS

• X86, X86_64 (Windows, Mac, Linux)

• 32bit ARM-Cortex

• 64bit ARM-Cortex-A (AARCH64 / Integrity TC)

• 32bit + 64 bit PowerPC (GCC toolchain)

• NVIDIA SoCs with ARM-Cortex-A

• Bachman PLC (VxWorks toolchain)

• Speedgoat Real-time Platform

• dSpace AutoBox + MicroAutoBOX II + III

• 32-bit Infineon AURIX TriCore

• NXP S32G Vehicle Network Processors

• Customized integration upon request

• Support of custom HW via obfuscated code
A
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Advantages:

• Lowest computation times

• Very low memory size

• No external libraries

• Static memory allocation

• Any embedded control platform

• User-friendly interfaces

• Coding standards are complied

(MISRA-C 2012)

• Superior robustness 
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PROVIDED INTERFACES

Advantages:

• Lowest computation times

• Very low memory size

• No external libraries

• Static memory allocation

• Any embedded control platform

• User-friendly interfaces

• Coding standards are complied

(MISRA-C 2012)

• Superior robustness 

Interfaces for solver generation:

• Python

• MATLAB 

• MATLAB / YALMIP

• MATLAB / Model Predictive Control Toolbox™

Generated solver can be used in:

• MATLAB

• MATLAB / Model Predictive Control Toolbox™

• MATLAB / Simulink

• C / C++

• Python
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CUSTOMER-BASE CONFIRMS PRODUCT QUALITY

Notable customers

Advantages:

• Lowest computation times

• Very low memory size

• No external libraries

• Static memory allocation

• Any embedded control platform

• User-friendly interfaces

• Coding standards are complied

(MISRA-C 2012)

• Superior robustness 
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OBTAINING FORCESPRO LICENSE

STEP 1: Go to Embotech’s online portal @ https://my.embotech.com/auth/sign_in

FOR ACADEMIA

STEP 2: Click on “Request License” to obtain a 6-month free lic

FOR ACADEMIA

STEP 2: Click on “Request License” to obtain a 6-month free lic
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