FORCESPRC HIGH-LEVEL INTERFACE

Uros Markovic Optimization Specialist

2022 American Control Conference Atlanta, GA, USA / June 2022

PROBLEM CLASS OVERVIEW

High-level interface supports (potentially) non-convex, finite-time nonlinear optimal control problems

- Provides users with a familiar easy-to-use interface for defining an optimization problem
- Gives advanced users full flexibility when importing external C-coded functions for evaluation
- Includes the class of mixed-integer nonlinear problems
- All functions involved (f_k, c_k, h_k) need to be continuously differentiable
- Supports all problem data to be parametric (unknown at code generation time)
- Supports discretization functions and integration schemes for nonlinear MPC

minimize	$\sum_{k=1}^{N-1} f_k(z_k, \boldsymbol{p_k})$	(separable objective)
subject to	$z_1(\mathcal{I}) = z_{\text{init}}$	(initial equality)
C - High A	$E_k z_{k+1} = c_k(z_k, \frac{p_k}{p_k})$	(inter-stage equality)
	$z_N(\mathcal{N}) = z_{ ext{final}}$	(final equality)
	$\underline{z}_k \le z_k \le \bar{z}_k$	(upper-lower bounds)
	$F_k z_k \in [\underline{z}_k, \overline{z}_k] \cap \mathbb{Z}$	(integer variables)
	$\underline{h}_k \le h_k(z_k, \underline{p_k}) \le \bar{h}_k$	(nonlinear constraints)

FUNCTION EVALUATION

FORCESPRO requires functions f, c, h and their derivatives (Jacobians) to be evaluated at each iteration

- Cost function terms $f_k(z_k)$ and their gradients $\nabla f_k(z_k)$
- **Dynamics** $c_k(z_k)$ and their Jacobians $\nabla c_k(z_k)$
- Inequality constraints $h_k(z_k)$ and their Jacobians $\nabla h_k(z_k)$

Code generator supports two ways of supplying these functions:

- Automatic C-code generation using supported differentiation tools (CasADi or Symbolic Math Toolbox)
- User-provided C-functions (source files) derived by hand or another AD tool

FUNCTION EVALUATION

FORCESPRO requires functions f, c, h and their derivatives (Jacobians) to be evaluated at each iteration

- Cost function terms $f_k(z_k)$ and their gradients $\nabla f_k(z_k)$
- **Dynamics** $c_k(z_k)$ and their Jacobians $\nabla c_k(z_k)$
- Inequality constraints $h_k(z_k)$ and their Jacobians $\nabla h_k(z_k)$

Code generator supports two ways of supplying these functions:

- Automatic C-code generation using supported differentiation tools (CasADi or Symbolic Math Toolbox)
- User-provided C-functions (source files) derived by hand or another AD tool

Recommended: Install CasADi and use it as the default differentiation tool for FORCESPRO NLP problems

- FORCESPRO real-time sequential quadratic programming (SQP) algorithm iteratively solves convex quadratic approximations of the (generally non-convex) problem
- The solution is stored internally in the solver and used as an initial guess for the next time the solver is called
- Provides fast solve times (compared to the interior point method), particularly suitable for MPC applications with
 - Small sampling time
 - Limited computational power of the hardware

% Select appropriate NLP solver codeoptions.solvemethod = 'SQP_NLP'; % default setting is 'PDIP'

- FORCESPRO real-time sequential quadratic programming (SQP) algorithm iteratively solves convex quadratic approximations of the (generally non-convex) problem
- The solution is stored internally in the solver and used as an initial guess for the next time the solver is called
- Provides fast solve times (compared to the interior point method), particularly suitable for MPC applications with
 - Small sampling time
 - Limited computational power of the hardware

- FORCESPRO real-time sequential quadratic programming (SQP) algorithm iteratively solves convex quadratic approximations of the (generally non-convex) problem
- The solution is stored internally in the solver and used as an initial guess for the next time the solver is called
- Provides fast solve times (compared to the interior point method), particularly suitable for MPC applications with
 - Small sampling time
 - Limited computational power of the hardware

Algorithm only supports affine inequalities

All inequality functions $h_k(z_k, p_k)$ must be **affine** functions of the variable z_k (not necessarily of p_k)

- FORCESPRO real-time sequential quadratic programming (SQP) algorithm iteratively solves convex quadratic approximations of the (generally non-convex) problem
- The solution is stored internally in the solver and used as an initial guess for the next time the solver is called
- Provides fast solve times (compared to the interior point method), particularly suitable for MPC applications with
 - Small sampling time
 - Limited computational power of the hardware

- Algorithm only supports affine inequalities
- Algorithm does not support problems comprising final equality constraints (specified via model.xfinalidx)

- FORCESPRO real-time sequential quadratic programming (SQP) algorithm iteratively solves convex quadratic approximations of the (generally non-convex) problem
- The solution is stored internally in the solver and used as an initial guess for the next time the solver is called
- Provides fast solve times (compared to the interior point method), particularly suitable for MPC applications with
 - Small sampling time
 - Limited computational power of the hardware

- Algorithm only supports affine inequalities
- Algorithm does not support problems comprising final equality constraints (specified via model.xfinalidx)
- Algorithm **does not support parallel execution** (setting *codeoptions.parallel* will have no effect)

SQP SOLVER OPTIONS

FORCESPRO **SQP** solves a **single convex quadratic approximation** by default:

- Fast solve times compared to a "full" SQP solver (solving quadratic NLP approx. until a KKT point is reached)
- Trade-off between the solve time and control performance (user can allow multiple quadratic approx.)

% Set the number of quadratic approximations to be solved at every call to the solver codeoptions.sqp_nlp.maxqps = k;

SQP SOLVER OPTIONS

FORCESPRO SQP solves a **single convex quadratic approximation** by default:

- Fast solve times compared to a "full" SQP solver (solving quadratic NLP approx. until a KKT point is reached)
- Trade-off between the solve time and control performance (user can allow multiple quadratic approx.)

% Set the number of quadratic approximations to be solved at every call to the solver codeoptions.sqp_nlp.maxqps = k;

A good choice of **hessian approximation** can often **improve the number of iterations** required by the SQP solver:

- **Default** option for the SQP solver is the **BFGS** hessian approximation
- Gauss-Newton hessian approximation can be beneficial for least-squares cost objective functions
- When using Gauss-Newton hessian approximation, one can also disable the internal line search

```
% Select the method for approximating the Hessian of the Lagrangian function
codeoptions.nlp.hessian_approximation = 'gauss-newton'; % default setting 'bfgs'
% Disable internal line search (cannot be disabled for the 'bfgs' method)
codeoptions.sqp_nlp.use_line_search = 0; % default setting 1
```


SQP SOLVER OPTIONS

User can control the initial SQP solver guess at run-time

- SQP solver uses the **solution from the previous call** as initial guess in every subsequent solver call (**default**)
- Initial guess can also be manually set in subsequent calls to the solver (provided through problem.x0)

% Manually set the primal initial guess at runtime problem.reinitialize = 1; % default 0

Additional solver options specific to the real-time FORCESPRO SQP solver:

% Set stationarity tolerance required for terminating the algorithm (convergence to a KKT point) codeoptions.sqp_nlp.TolStat = 1e-6; % default setting

% Set feasibility tolerance required for terminating the algorithm (convergence to a feasible point) codeoptions.sqp_nlp.TolEq = 1e-6; % default setting

% Set the level of regularization of the hessian approximation codeoptions.sqp_nlp.reg_hessian = 5e-9; % default setting

% Set the initialization strategy for the internal QP solver codeoptions.sqp_nlp.qpinit = 0; % 0: cold start (default); 1: centered start

1 PATH PLANNING (OBSTACLE AVOIDANCE)

Simple introductory example to the high-level interface

Detailed **example description** and **MATLAB code** are **available for download here**

AIM

maximize

subject to car dynamics actuator limits bounds on states avoid ext. obstacles stay on track

y

COST FUNCTION

 $f(z) = -100y + 0.1F^2 + 0.01s^2$

VARIABLES & PARAMETERS

x, y = cartesian coordin	ates of the car
v = velocity	θ = heading angle
<i>F</i> = acceleration force	<i>s</i> = steering torque
m = mass (1kg)	L = wheel base (1m)

AIM

maximize

subject to car dynamics actuator limits bounds on states avoid ext. obstacles stay on track

y

COST FUNCTION

 $f(z) = -100y + 0.1F^2 + 0.01s^2$

VARIABLES & PARAMETERS

x, y = cartesian coordin	ates of the car
v = velocity	θ = heading angle
<i>F</i> = acceleration force	<i>s</i> = steering torque
m = mass (1kg)	L = wheel base (1m)

embotech*

AIM

maximize y subject to car dynamics actuator limits bounds on states avoid ext. obstacles stay on track `**†**y X

COST FUNCTION

 $f(z) = -100y + 0.1F^2 + 0.01s^2_{\text{states}}$ x, y = cartesian coordinates of the car v = velocityF = acceleration force s = steering torque m = mass (1kg)

CAR DYNAMICS

 $\dot{\mathbf{x}} = v \cos(\theta)$ $\dot{\mathbf{y}} = v \sin(\theta)$ $\dot{\boldsymbol{v}} = F/m$ $\dot{\Theta} = s/L$

VARIABLES & PARAMETERS

 θ = heading angle

L = wheel base (1m)

AIM

maximize y subject to car dynamics actuator limits bounds on states avoid ext. obstacles stay on track `**†**y X

COST FUNCTION

 $f(z) = -100y + 0.1F^2 + 0.01s^2$

VARIABLES & PARAMETERS

 $+ 0.01s^2$ x, y = cartesian coordinates of the carv = velocity $\theta = heading angle$ control inputs $\langle F = acceleration force$ s = steering torquem = mass (lkg)L = wheel base (lm)

CAR DYNAMICS

 $\dot{x} = v \cos(\theta)$ $\dot{y} = v \sin(\theta)$ $\dot{v} = F/m$ $\dot{\theta} = s/L$

AIM

maximize y subject to car dynamics actuator limits bounds on states avoid ext. obstacles stay on track `**†**y X

COST FUNCTION

 $f(z) = -100y + 0.1F^2 + 0.01s^2$

VARIABLES & PARAMETERS

 $0.01s^2$ x, y = cartesian coordinates of the carv = velocity θ = heading angleF = acceleration forces = steering torqueparameters $\prec m$ = mass (lkg)L = wheel base (lm)

CAR DYNAMICS

 $\dot{x} = v \cos(\theta)$ $\dot{y} = v \sin(\theta)$ $\dot{v} = F/m$ $\dot{\theta} = s/L$

X

AIM

maximize y subject to car dynamics actuator limits bounds on states avoid ext. obstacles stay on track `**†**y

COST FUNCTION

 $f(z) = -100y + 0.1F^2 + 0.01s^2$

CAR DYNAMICS

 $\dot{x} = v \cos(\theta)$ $\dot{y} = v \sin(\theta)$ $\dot{v} = F/m$ $\dot{\theta} = s/L$

CONSTRAINTS

 $-5N \le F \le 5N$ $-1Nm \le s \le 5Nm$

VARIABLES & PARAMETERS

x, y = cartesian coordinates of the carv = velocity $\theta =$ heading angleF = acceleration forces = steering torquem = mass (lkg)L = wheel base (lm)

X

AIM

maximize y subject to car dynamics actuator limits bounds on states avoid ext. obstacles stay on track **y**

COST FUNCTION

 $f(z) = -100y + 0.1F^2 + 0.01s^2$

VARIABLES & PARAMETERS

x, y = cartesian coordin	ates of the car
v = velocity	θ = heading angle
F = acceleration force	s = steering torque
m = mass (1kg)	L = wheel base (1m)

CAR DYNAMICS

 $\dot{x} = v \cos(\theta)$ $\dot{y} = v \sin(\theta)$ $\dot{v} = F/m$ $\dot{\theta} = s/L$

CONSTRAINTS

 $-5N \le F \le 5N$ $-1Nm \le s \le 5Nm$ $-3m \le x \le 0m$ $0m \le y \le 3m$ $0m/s \le v \le 2m/s$ $0rad \le \Theta \le \pi rad$

AIM

maximize y subject to car dynamics actuator limits bounds on states **avoid ext. obstacles stay on track**

COST FUNCTION

 $f(z) = -100y + 0.1F^2 + 0.01s^2$

CAR DYNAMICS

 $\dot{x} = v \cos(\theta)$ $\dot{y} = v \sin(\theta)$ $\dot{v} = F/m$ $\dot{\theta} = s/L$

CONSTRAINTS

 $-5N \le F \le 5N$ $-1Nm \le s \le 5Nm$ $-3m \le x \le 0m$ $0m \le y \le 3m$ $0m/s \le v \le 2m/s$ $0rad \le \theta \le \pi rad$

VARIABLES & PARAMETERS

x, y = cartesian coordin	ates of the car
v = velocity	θ = heading angle
<i>F</i> = acceleration force	s = steering torque
m = mass (1kg)	L = wheel base (1m

COLLISION CONSTRAINTS

 $1^2 \le x^2 + y^2 \le 3^2$ $0.95^2 \le (x+2)^2 + (y-2.5)^2$

AIM

maximize y subject to car dynamics actuator limits bounds on states **avoid ext. obstacles stay on track**

COST FUNCTION

 $f(z) = -100y + 0.1F^2 + 0.01s^2$

CAR DYNAMICS

 $\dot{x} = v \cos(\theta)$ $\dot{y} = v \sin(\theta)$ $\dot{v} = F/m$ $\dot{\theta} = s/L$

CONSTRAINTS

 $-5N \le F \le 5N$ $-1Nm \le s \le 5Nm$ $-3m \le x \le 0m$ $0m \le y \le 3m$ $0m/s \le v \le 2m/s$ $0rad \le \theta \le \pi rad$

VARIABLES & PARAMETERS

x, y = cartesian coordin	ates of the car
v = velocity	θ = heading angle
<i>F</i> = acceleration force	s = steering torque
m = mass (1kg)	L = wheel base (1m

COLLISION CONSTRAINTS

X

AIM

maximize y subject to car dynamics actuator limits bounds on states avoid ext. obstacles stay on track **y** =====

COST FUNCTION

 $f(z) = -100y + 0.1F^2 + 0.01s^2$

VARIABLES & PARAMETERS

x, y = cartesian coordin	ates of the car
v = velocity	θ = heading angle
F = acceleration force	<i>s</i> = steering torque
m = mass (1kg)	L = wheel base (1m

CAR DYNAMICS

CONSTRAINTS

 $-5N \le F \le 5N$ $-1Nm \le s \le 5Nm$ $-3m \le x \le 0m$ $0m \le y \le 3m$ $0m/s \le v \le 2m/s$ $0rad \le \theta \le \pi rad$

AIM

maximize y subject to car dynamics actuator limits bounds on states avoid ext. obstacles stay on track

COST FUNCTION

 $f(z) = -100y + 0.1F^2 + 0.01s^2$

CAR DYNAMICS

 $\dot{x} = v \cos(\theta)$ $\dot{y} = v \sin(\theta)$ $\dot{v} = F/m$ $\dot{\theta} = s/L$

CONSTRAINTS

 $-5N \le F \le 5N$ $-1Nm \le s \le 5Nm$ $-3m \le x \le 0m$ $0m \le y \le 3m$ $0m/s \le v \le 2m/s$ $0rad \le \theta \le \pi rad$

VARIABLES & PARAMETERS

x, y = cartesian coordin	ates of the car
v = velocity	θ = heading angle
<i>F</i> = acceleration force	s = steering torque
m = mass (1kg)	L = wheel base (1m

COLLISION CONSTRAINTS

 $1^{2} \le x^{2} + y^{2} \le 3^{2}$ $0.95^{2} \le (x+2)^{2} + (y-2.5)^{2}$

INITIAL / FINAL CONDITIONS

 $x_{init} = -2m, \quad y_{init} = 0m,$ $v_{init} = 0m/s, \quad \Theta_{init} = 120^{\circ}$ $v_{final} = 0m/s, \quad \Theta_{final} = 0^{\circ}$

AIM

maximize y subject to car dynamics actuator limits bounds on states avoid ext. obstacles stay on track

COST FUNCTION

 $f(z) = -100y + 0.1F^2 + 0.01s^2$

CAR DYNAMICS

 $\dot{x} = v \cos(\theta)$ $\dot{y} = v \sin(\theta)$ $\dot{v} = F/m$ $\dot{\theta} = s/L$

CONSTRAINTS

 $-5N \le F \le 5N$ $-1Nm \le s \le 5Nm$ $-3m \le x \le 0m$ $0m \le y \le 3m$ $0m/s \le v \le 2m/s$ $0rad \le \theta \le \pi rad$

VARIABLES & PARAMETERS

x, y = cartesian coordin	ates of the car
v = velocity	θ = heading angle
<i>F</i> = acceleration force	s = steering torque
m = mass (1kg)	L = wheel base (1m

COLLISION CONSTRAINTS

 $1^{2} \le x^{2} + y^{2} \le 3^{2}$ $0.95^{2} \le (x+2)^{2} + (y-2.5)^{2}$

STEP 1: PROBLEM DEFINITION

- Problem dimension (horizon length, number of variables/constraints)
- Objective function
- Equality constraints (dynamics)
- Inequality constraints (upper/lower bounds, differentiable nonlinear inequalities)
- Info about initial and final conditions
- Solver options (iteration number, code optimization, progress print, target platform etc.)

STEP 2 : GENERATE THE SOLVER

STEP 3 : CALL THE SOLVER WITH RUNTIME INPUT PARAMETERS

STEP 1: PROBLEM DEFINITION (Variables collected stage-wise into $z = [F, s, x, y, v, \theta]$)

• Problem dimension (horizon length, number of variables/constraints)

<pre>model.N = 50;</pre>	% horizon length
<pre>model.nvar = 6;</pre>	% number of variables
<pre>model.neq = 4;</pre>	% number of equality constraints
<pre>model.nh = 2;</pre>	% number of inequality constraint functions
<pre>model.npar = 0;</pre>	% number of runtime parameters

 $\dot{x} = v \cos(\theta)$ $\dot{y} = v \sin(\theta)$ $\dot{v} = F/m$ $\dot{\theta} = s/L$

STEP 1: PROBLEM DEFINITION (Variables collected stage-wise into $z = [F, s, x, y, v, \theta]$)

- Problem dimension (horizon length, number of variables/constraints)
- Objective function

```
% In this example, we want to maximize position in y direction, with
some penalties on the inputs F and s:
model.objective = @(z) -100*z(4) + 0.1*z(1)^2 + 0.01*z(2)^2;
```

COST FUNCTION $f(z) = -100y + 0.1F^2 + 0.01s^2$

STEP 1: PROBLEM DEFINITION (Variables collected stage-wise into $z = [F, s, x, y, v, \theta]$)

- Problem dimension (horizon length, number of variables/constraints)
- Objective function
- Equality constraints (dynamics)

CAR DYNAMICS

$$\dot{x} = v \cos(\theta)$$
$$\dot{y} = v \sin(\theta)$$
$$\dot{v} = F/m$$
$$\dot{\theta} = s/L$$

% Use an explicit RK4 integrator to discretize continuous dynamics: model.eq = @(z) RK4(z(3:6), z(1:2), cont_dynamics, integrator_step);

```
% Indices on LHS of dynamical constraint - efficienct when E = [0 I]:
model.E = [zeros(4,2), eye(4)];
```


STEP 1: PROBLEM DEFINITION (Variables collected stage-wise into $z = [F, s, x, y, v, \theta]$)

- Problem dimension (horizon length, number of variables/constraints)
- Objective function
- Equality constraints (dynamics)
- Inequality constraints (upper/lower bounds, differentiable nonlinear inequalities)

```
% upper/lower variable bounds lb ≤ x ≤ ub
% F s | x y v theta
model.lb = [ -5, -1, -3, 0 0 0 ];
model.ub = [ +5, +1, 0, 3 2 +pi ];
```

% General (differentiable) nonlinear inequalities $hl \le h(x) \le hu$ model.ineq = @(z) [z(3)^2 + z(4)^2; (z(3)+2)^2 + (z(4)-2.5)^2];

% Upper/lower bounds for inequalities model.hu = [9, +inf]'; model.hl = [1, 0.95^2]'; **CONSTRAINTS** $-5N \le F \le 5N$ $-1Nm \le s \le 5Nm$ $-3m \le x \le 0m$ $0m \le y \le 3m$

 $0m/s \le v \le 2m/s$

0rad $< \theta < \pi$ rad

COLLISION CONSTRAINTS

embotech*

STEP 1: PROBLEM DEFINITION (Variables collected stage-wise into $z = [F, s, x, y, v, \theta]$)

- Problem dimension (horizon length, number of variables/constraints)
- Objective function
- Equality constraints (dynamics)
- Inequality constraints (upper/lower bounds, differentiable nonlinear inequalities)
- Info about initial and final conditions

```
% Initial condition on vehicle states
% x=-2, y=0, v=0 (standstill), heading angle=120
model.xinit = [-2, 0, 0, deg2rad(120)]';
model.xinitidx = 3:6; % specify on which variables are imposed
% Final condition on vehicle velocity and heading angle
% v final=0 (standstill), heading angle final=0
model.xfinal = [0, deg2rad(0)]';
```

model.xfinalidx = 5:6; % specify on which variables are imposed

INITIAL / FINAL CONDITIONS

```
x_{init} = -2m, y_{init} = 0m,
v_{init} = 0m/s, \Theta_{init} = 120^{\circ}
v_{final} = 0m/s, \Theta_{final} = 0^{\circ}
```


STEP 1: PROBLEM DEFINITION (Variables collected stage-wise into $z = [F, s, x, y, v, \theta]$)

- Problem dimension (horizon length, number of variables/constraints)
- Objective function
- Equality constraints (dynamics)
- Inequality constraints (upper/lower bounds, differentiable nonlinear inequalities)
- Info about initial and final conditions
- Solver options (iteration number, code optimization, progress print, target platform etc.)

```
codeoptions = getOptions('FORCESNLPsolver');
codeoptions.maxit = 200; % Maximum number of iterations
codeoptions.optlevel = 2; % Optimization level
codeoptions.cleanup = false; % Remove function evaluation code
codeoptions.nlp.compact_code = 0; % Generate smaller code size
codeoptions.BuildSimulinkBlock = 0; % Don't mex Simulink block
codeoptions.printlevel = 0; % Print progress
codeoptions.server = 'https://forces.embotech.com';
codeoptions.platform = 'dSPACE-MABXIII'; % target platform
```


STEP 1: PROBLEM DEFINITION

- Problem dimension (horizon length, number of variables/constraints)
- Objective function
- Equality constraints (dynamics)
- Inequality constraints (upper/lower bounds, differentiable nonlinear inequalities)
- Info about initial and final conditions
- Solver options (iteration number, code optimization, progress print, target platform etc.)

STEP 2 : GENERATE THE SOLVER

FORCES_NLP(model, codeoptions);

STEP 1: PROBLEM DEFINITION

STEP 2 : GENERATE THE SOLVER

STEP 3 : CALL THE SOLVER WITH RUNTIME INPUT PARAMETERS

```
% Set initial guess to start solver from:
x0i=model.lb+(model.ub-model.lb)/2;
x0=repmat(x0i',model.N,1);
problem.x0=x0;
```

```
% Set initial and final conditions:
problem.xinit = model.xinit;
problem.xfinal = model.xfinal;
```

```
% Time to solve the NLP!
[output,exitflag,info] = FORCESNLPsolver(problem);
```


PLANNED PATH & CONTROL ACTIONS

ACC Workshop on Real time NMPC - From Fundamentals to Industrial Applications, June 7, 2022, Copyright (C) Embotech AG
2 PATH TRACKING

ACC Workshop on Real time NMPC – From Fundamentals to Industrial Applications, June 7, 2022, Copyright (C) Embotech AG

APPLICATION

Lane change (intersection) / passing by another car

MPC PROBLEM

Control the car to track the trajectory in real time

PROBLEM FORMULATION: DYNAMIC MODEL

KINEMATIC BICYCLE MODEL

Bicycle model encompassing both **lateral** and **longitudinal** vehicle dynamics

Kong, J., Pfeiffer, M., Schildbach, G., Borelli, F.:"Kinematic and dynamic models for autonomous driving control design."2015 IEEE Intelligent Vehices Symposium (IV), pp.1094-1099, 2015.

SYSTEM DYNAMICS

Represented by a **5th-order** vehicle model of the form:

$$\dot{x} = x \cos(\theta + \beta)$$
$$\dot{y} = y \sin(\theta + \beta)$$
$$\dot{v} = \frac{F}{m}$$
$$\dot{\theta} = \frac{v}{l_r} \sin\beta$$
$$\dot{\delta} = \phi$$

with

$$\beta = \tan^{-1}(\frac{l_r}{l_r + l_f} \tan \delta)$$

VARIABLES & PARAMETERS

STATE VARIABLES

- 2D car position (x, y)
- Car velocity v
- Heading angle θ
- Steering angle δ

CONTROL INPUTS

- Acceleration force F
- Steering rate ϕ

PARAMETERS

- Car mass m
- Distance l_r rear wheels to COG
- Distance l_f front wheels to COG

PROBLEM FORMULATION: OBJECTIVE

GOALS

- Drive the car as closely as possible along the desired trajectory path points
- Avoid excessive maneuvers (ride comfort)

STAGEWISE OBJECTIVE COST FUNCTION

Least square costs on deviating from the path and on the use of control action

$$f_i(z, p_i) = \min_{z_1, z_2} \frac{1}{2} ||r_i(z, p_i)||_2^2$$
$$r_i(z, p_i) = \begin{bmatrix} \sqrt{200}(z_3 - p_{i,x}) \\ \sqrt{200}(z_4 - p_{i,y}) \\ \sqrt{0.2}z_1 \\ \sqrt{0.02}z_2 \end{bmatrix}$$

Variables

 $z = [F, \phi, x, y, v, \theta, \delta]^T$

embotech

- Runtime parameters $p_i = \left[p_{i,x}, p_{i,y}
 ight]^T$
- Using Gauss-Newton hessian approximation due to a least square objective function

SOLVER GENERATION

```
function [model, codeoptions, I] = generatePathTrackingSolver(solverDir, timeStep, horizonLength)
   %% Indices - struct I keeps track of variable sorting in z
   % Inputs
   I.FLon = 1; I.steeringRate = 2;
   I.inputs = [I.FLon, I.steeringRate];
   % States
   I.xPos = 3; I.yPos = 4; I.velocity = 5; I.heading = 6; I.steeringAngle = 7;
   I.states = [I.xPos, I.yPos, I.velocity, I.heading, I.steeringAngle];
    %% Problem dimensions
   nInputs = numel(I.inputs);
   nStates = numel(I.states);
   model.N = horizonLength; % Horizon length
   model.nvar = nInputs+nStates; % Number of variables
   model.neg = nStates;
                                    % Number of equality constraints
                                     % Number of runtime parameters (waypoint coordinates)
   model.npar = 2;
   %% Objective function
   % Definitions of LSobj and LSobjN further below in this file
   model.LSobjective = @(z,p)LSobj(z,p,I);
```

model.LSobjectiveN = @(z,p)LSobjN(z,p,I); % Increased costs for the last stage ...

SOLVER GENERATION

```
% Dynamics, i.e. equality constraints
% We use an explicit RK4 integrator here to discretize continuous dynamics:
model.eq = @(z) RK4( z(I.states), z(I.inputs), @(x,u)continuousDynamics(x,u,I), timeStep);
% Indices on LHS of dynamical constraints
model.E = [zeros(nStates,nInputs), eye(nStates)];
% Inequality constraints
% Upper/lower variable bounds lb ≤ z ≤ ub
% inputs | states
% FLon steeringRate | xPos yPos velocity heading steeringAngle
model.lb = [ -5., deg2rad(-90), -100., -100., 0., -inf, deg2rad(-50)];
model.ub = [ +5., deg2rad(90), 100., 100., 5., +inf, deg2rad(50)];
```

% Initial conditions on vehicle states

model.xinitidx = I.states; % Use this to specify on which variables initial conditions are imposed ...

SOLVER GENERATION

```
%% Define solver options
   codeoptions = getOptions('PathTrackingSolver');
   codeoptions.maxit = 200; % Maximum number of iterations
   codeoptions.optlevel = 3; % 0: No optimization, good for prototyping
   codeoptions.timing = 1;
   codeoptions.printlevel = 0;
   codeoptions.nohash = 1; % Enforce solver regeneration
   codeoptions.overwrite = 1; % Overwrite existing solver
   codeoptions.BuildSimulinkBlock = 0;
   % SQP options
   codeoptions.solvemethod = 'SOP_NLP';
   codeoptions.nlp.hessian_approximation = 'gauss-newton';
   codeoptions.sqp_nlp.maxqps = 1; % Max number of quadratic problems to be solved in one solver call
   codeoptions.sgp_nlp.use_line_search = 0;
   % PDIP options (alternatively)
   codeoptions.solvemethod = 'PDIP_NLP';
   codeoptions.nlp.hessian_approximation = 'bfgs';
   %% Generate FORCESPRO solver
   FORCES_NLP(model, codeoptions);
end
```


CONTROL PERFORMANCE

ACC Workshop on Real time NMPC - From Fundamentals to Industrial Applications, June 7, 2022, Copyright (C) Embotech AG

CONTROL PERFORMANCE

ACC Workshop on Real time NMPC – From Fundamentals to Industrial Applications, June 7, 2022, Copyright (C) Embotech AG

3 ENERGY-EFFICIENT SHORTEST EV TRIP

- **Reducing** the overall **energy consumption**
- Selecting the most suitable charging locations
- Considering various **vehicle**, **road**, and **environmental aspects**

Goal: Determine EV's optimal speed and charging profiles in order to minimize total travel time, while

- **Reducing** the overall **energy consumption**
- Selecting the most suitable charging locations
- Considering various vehicle, road, and environmental aspects

Electric vehicle traveling between two locations (predefined route)

- **Reducing** the overall **energy consumption**
- Selecting the most suitable charging locations
- Considering various vehicle, road, and environmental aspects

- **Reducing** the overall **energy consumption**
- Selecting the most suitable charging locations
- Considering various vehicle, road, and environmental aspects

Goal: Determine EV's optimal speed and charging profiles in order to minimize total travel time, while

- **Reducing** the overall **energy consumption** •
- Selecting the most suitable charging locations •
- Considering various vehicle, road, and environmental aspects

Route characteristics:

- Speed limits
- Road slopes
- Charging locations

- **Reducing** the overall **energy consumption**
- Selecting the most suitable charging locations
- Considering various vehicle, road, and environmental aspects

- **Reducing** the overall **energy consumption**
- Selecting the most suitable charging locations
- Considering various vehicle, road, and environmental aspects

- **Reducing** the overall **energy consumption**
- Selecting the most suitable charging locations
- Considering various **vehicle**, **road**, and **environmental aspects**

- **Reducing** the overall **energy consumption**
- Selecting the most suitable charging locations
- Considering various **vehicle**, **road**, and **environmental aspects**

- **Reducing** the overall **energy consumption**
- Selecting the most suitable charging locations
- Considering various **vehicle**, **road**, and **environmental aspects**

- **Reducing** the overall **energy consumption**
- Selecting the most suitable charging locations
- Considering various vehicle, road, and environmental aspects

Goal: Determine EV's optimal speed and charging profiles in order to minimize total travel time, while

- **Reducing** the overall **energy consumption**
- Selecting the most suitable charging locations
- Considering various **vehicle**, **road**, and **environmental aspects**

Input: Route and charging station information, EV specifications, energy prices, weather forecast etc.

Goal: Determine EV's optimal speed and charging profiles in order to minimize total travel time, while

- **Reducing** the overall **energy consumption**
- Selecting the most suitable charging locations
- Considering various **vehicle**, **road**, and **environmental aspects**

Input: Route and charging station information, EV specifications, energy prices, weather forecast etc.

Goal: Determine EV's optimal speed and charging profiles in order to minimize total travel time, while

- **Reducing** the overall **energy consumption**
- Selecting the most suitable charging locations
- Considering various **vehicle**, **road**, and **environmental aspects**

Input: Route and charging station information, EV specifications, energy prices, weather forecast etc.

Method: FORCESPRO NLP solver providing real-time speed and charging profiles

- Implemets a **shrinking horizon MPC** encompassing the whole route
- Discretization in **spatial domain** using kinetic energy laws
- Highly efficient online computation (500-stage simulations solved in less than 100ms)
- MPC parameters could be stage dependent, allowing for exogenous (stochastic) inputs

TIME VS SPACE DOMAIN

TIME DOMAIN

- + Simple vehicle dynamics, easily obtainable QP
- + No numerical obstacles for speeds close to zero
- Inaccurate approximation of control actions and vehicle energy dynamics

SPACE DOMAIN

- + More accurate system representation
- Allows for road position-specific parameters
- Practical for time-optimal problems
- Introduces **nonlinearity** to vehicle dynamics

(not an issue for **FORCES**PRO NLP solver)

DYNAMIC VEHICLE MODEL

MECHANICAL MODEL

- Longitudinal vehicle dynamics based on traction, rolling resistance, gravitational and air drag force
- Velocity determined via kinetic energy and motion laws (highly nonlinear)
- Use of nonlinear efficiency maps for charging power and vehicle's powertrain efficiency
- **Regenerative breaking** capabilities

DYNAMIC VEHICLE MODEL

MECHANICAL MODEL

- Longitudinal vehicle dynamics based on traction, rolling resistance, gravitational and air drag force
- Velocity determined via kinetic energy and motion laws (highly nonlinear)
- Use of nonlinear efficiency maps for charging power and vehicle's powertrain efficiency
- **Regenerative breaking** capabilities

VEHICLE ENERGETICS

- Charging stops can be **optional** or **mandatory**
- Charging speed determined by vehicle's SoC
- Charging decisions defined as charging time associated with each discrete spatial step

$$egin{aligned} v_{i+1} &= \sqrt{rac{2\,(F_{ ext{t},i}-F_{ ext{b},i}-F_{ ext{r},i})L_{ ext{s}}}{m_{ ext{eq}}}} + v_i^2 \ t_{i+1} &= t_i + rac{L_{ ext{s}}}{v_i} + \Delta t_i \ \zeta_{i+1} &= \zeta_i - rac{F_{ ext{t},i}L_{ ext{s}}}{\eta_i E_{ ext{cap}}} + rac{P_{ ext{ch},i}}{E_{ ext{cap}}}\Delta t_i \end{aligned}$$

embotech*

HIGHLY NONLINEAR DYNAMICS!

ACC Workshop on Real time NMPC – From Fundamentals to Industrial Applications, June 7, 2022, Copyright (C) Embotech AG

HIGHLY NONLINEAR DYNAMICS!

ACC Workshop on Real time NMPC – From Fundamentals to Industrial Applications, June 7, 2022, Copyright (C) Embotech AG

OBJECTIVE FUNCTION

minimize t_N

• **Primary goal:** minimize **total travel time**, i.e. minimize terminal variable t_N at the last stage

OBJECTIVE FUNCTION

- **Primary goal:** minimize **total travel time**, i.e. minimize terminal variable t_N at the last stage
- Secondry goal: minimize the stage cost associated with slack variable s_i (SoC limits)

$$ext{minimize} \quad t_N + \sum_{i=0}^{N-1} \left[\omega_{ ext{s}} s_i
ight]$$

OBJECTIVE FUNCTION

- **Primary goal:** minimize **total travel time**, i.e. minimize terminal variable t_N at the last stage
- Secondry goal: minimize the stage cost associated with slack variable s_i (SoC limits)
- Optional goals: ensure comfortable driving operation and pursue energy economy

$$ext{minimize} \quad t_N + \sum_{i=0}^{N-1} \left(\omega_{\mathrm{s}} s_i + \omega_{\mathrm{e}} F_{\mathrm{t},i}^2 + \omega_{\mathrm{b}} F_{\mathrm{b},i}^2
ight)$$

OBJECTIVE FUNCTION

- **Primary goal:** minimize **total travel time**, i.e. minimize terminal variable t_N at the last stage
- Secondry goal: minimize the stage cost associated with slack variable s_i (SoC limits)
- Optional goals: ensure comfortable driving operation and pursue energy economy

CONSTRAINTS

• Equality constraints (dynamics)

$$\begin{array}{ll} \text{minimize} \quad t_N + \sum_{i=0}^{N-1} \left(\omega_{\text{s}} s_i + \omega_{\text{e}} F_{\text{t},i}^2 + \omega_{\text{b}} F_{\text{b},i}^2 \right) \\ \text{subject to} \quad v_{i+1} = \sqrt{\frac{2L_{\text{s}}}{m_{\text{eq}}} (F_{\text{t},i} - F_{\text{b},i} - F_{\text{r},i}) + v_i^2} \\ t_{i+1} = t_i + L_{\text{s}} v_i^{-1} + \Delta t_i \\ \zeta_{i+1} = \zeta_i - \frac{L_{\text{s}}}{\eta_i E_{\text{cap}}} F_{\text{t},i} + \frac{P_{\text{ch},i}}{E_{\text{cap}}} \Delta t_i \end{array}$$

OBJECTIVE FUNCTION

- **Primary goal:** minimize **total travel time**, i.e. minimize terminal variable t_N at the last stage
- Secondry goal: minimize the stage cost associated with slack variable s_i (SoC limits)
- Optional goals: ensure comfortable driving operation and pursue energy economy

CONSTRAINTS

- Equality constraints (dynamics)
- State bounds (upper/lower limits on vehicle's velocity and state-of-charge)

$$\begin{array}{ll} \text{minimize} \quad t_N + \sum_{i=0}^{N-1} \left(\omega_{\text{s}} s_i + \omega_{\text{e}} F_{\text{t},i}^2 + \omega_{\text{b}} F_{\text{b},i}^2 \right) \\ \text{subject to} \quad v_{i+1} = \sqrt{\frac{2L_{\text{s}}}{m_{\text{eq}}} (F_{\text{t},i} - F_{\text{b},i} - F_{\text{r},i}) + v_i^2} \\ t_{i+1} = t_i + L_{\text{s}} v_i^{-1} + \Delta t_i \\ \zeta_{i+1} = \zeta_i - \frac{L_{\text{s}}}{\eta_i E_{\text{cap}}} F_{\text{t},i} + \frac{P_{\text{ch},i}}{E_{\text{cap}}} \Delta t_i \\ \frac{v}{\zeta} - s_i \leq \bar{v}_i \\ \frac{\zeta}{\zeta} - s_i \leq \zeta_i \leq \bar{\zeta} + s_i \end{array}$$

OBJECTIVE FUNCTION

- **Primary goal:** minimize **total travel time**, i.e. minimize terminal variable t_N at the last stage
- Secondry goal: minimize the stage cost associated with slack variable s_i (SoC limits)
- Optional goals: ensure comfortable driving operation and pursue energy economy

CONSTRAINTS

- Equality constraints (dynamics)
- State bounds (upper/lower limits on vehicle's velocity and state-of-charge)
- Control input bounds (upper limits on traction, braking and permissible charging time)

 $ext{minimize} \quad t_N + \sum_{i=0}^{N-1} \left(\omega_{ ext{s}} s_i + \omega_{ ext{e}} F_{ ext{t},i}^2 + \omega_{ ext{b}} F_{ ext{b},i}^2
ight)$ $ext{subject to} \quad v_{i+1} = \sqrt{rac{2L_{ ext{s}}}{m_{ ext{eq}}}(F_{ ext{t},i}-F_{ ext{b},i}-F_{ ext{r},i})+v_i^2}$ $t_{i+1} = t_i + L_{\mathrm{s}} v_i^{-1} + \Delta t_i$ $\zeta_{i+1} = \zeta_i - rac{L_{
m s}}{\eta_i E_{
m cap}} F_{{
m t},i} + rac{P_{{
m ch},i}}{E_{
m cap}} \Delta t_i$ $v \leq v_i \leq ar{v}_i$ $\zeta - s_i \leq \zeta_i \leq \overline{\zeta} + s_i$ $0 < \Delta t_i < \Delta \bar{t}_i$ $0 \leq F_{\mathrm{t},i} \leq \bar{F}_{\mathrm{t},i}$ $0 \leq F_{\mathrm{b},i} \leq \bar{F}_{\mathrm{b}}$

OBJECTIVE FUNCTION

- **Primary goal:** minimize **total travel time**, i.e. minimize terminal variable t_N at the last stage
- Secondry goal: minimize the stage cost associated with slack variable s_i (SoC limits)
- Optional goals: ensure comfortable driving operation and pursue energy economy

CONSTRAINTS

- Equality constraints (dynamics)
- State bounds (upper/lower limits on vehicle's velocity and state-of-charge)
- Control input bounds (upper limits on traction, braking and permissible charging time)
- Trivial feasibility terms and initial conditions

 $ext{minimize} \quad t_N + \sum_{i=0}^{N-1} \left(\omega_{ ext{s}} s_i + \omega_{ ext{e}} F_{ ext{t},i}^2 + \omega_{ ext{b}} F_{ ext{b},i}^2
ight)$ $ext{subject to} \quad v_{i+1} = \sqrt{rac{2L_{ ext{s}}}{m_{ ext{eq}}}(F_{ ext{t},i}-F_{ ext{b},i}-F_{ ext{r},i})+v_i^2}$ $t_{i+1} = t_i + L_{\mathrm{s}} v_i^{-1} + \Delta t_i$ $\zeta_{i+1} = \zeta_i - rac{L_{ ext{s}}}{\eta_i E_{ ext{cap}}} F_{ ext{t},i} + rac{P_{ ext{ch},i}}{E_{ ext{cap}}} \Delta t_i$ $v \leq v_i \leq ar{v}_i$ $\zeta - s_i \leq \zeta_i \leq \overline{\zeta} + s_i$ $0 < \Delta t_i < \Delta \bar{t}_i$ $0 \leq F_{\mathrm{t},i} \leq ar{F}_{\mathrm{t},i}$ $0 \leq F_{\mathrm{b},i} \leq ar{F}_{\mathrm{b}}$ $F_{\mathrm{t},i}F_{\mathrm{b},i} \leq \varepsilon_{\mathrm{F}}$ $0 \leq s_i$ $x_0 = x_{\text{init}}$

embotec
PROBLEM CONSTRAINTS & OBJECTIVES

% Smooth maximum: max = ForcesMax(a, b)
sqrt(ForcesMax(2*Ls/meq*(Ft - Fb - Fr) + v^2, 0)

- **Primary goal:** minimize **total travel time**, i.e. minimize terminal variable t_N at the last stage
- Secondry goal: minimize the stage cost associated with slack variable s_i (SoC limits)
- Optional goals: ensure comfortable driving operation and pursue energy economy

CONSTRAINTS

- Equality constraints (dynamics)
- State bounds (upper/lower limits on vehicle's velocity and state-of-charge)
- Control input bounds (upper limits on traction, braking and permissible charging time)
- Trivial feasibility terms and initial conditions

ROUTE PROFILE

- 573km trip with 1km discretization steps
- 50kW DC charging stations available at 150km and 380km mark

VEHICLE SPECIFICATION

- BMW i3 (120Ah 42kWh)
- Max speed: 150km/h
- Max range: 260km
- SoC limits: **10% 90%**

TRIP OBJECTIVE

 Travel from Munich to Cologne in the shortest amount of time (drive + charge)

ROUTE PROFILE

- 573km trip with 1km discretization steps
- 50kW DC charging stations available at 150km and 380km mark

VEHICLE SPECIFICATION

- BMW i3 (120Ah 42kWh)
- Max speed: 150km/h
- Max range: 260km
- SoC limits: **10% 90%**

TRIP OBJECTIVE

 Travel from Munich to Cologne in the shortest amount of time (drive + charge)

OBSERVATIONS

- Charging is optimally done such that the vehicle arrives with minimum permissible SoC level (thus spending less time charging)
- Vehicle speed is adjusted (sometimes below maximum road speed limit) as a trade-off between the driving and charging time

Total travel time	Total charging time
399.13min	76.19min

OBSERVATIONS

- Charging is optimally done such that the vehicle arrives with minimum permissible SoC level (thus spending less time charging)
- Vehicle speed is adjusted (sometimes below maximum road speed limit) as a trade-off between the driving and charging time
- Higher charger availability shortens the trip time by 7.35%, despite the total charging time being 9.82% higher

Total travel time	Total charging time
371.82min	84.49min

ACC Workshop on Real time NMPC - From Fundamentals to Industrial Applications, June 7, 2022, Copyright (C) Embotech AG

4 PLATOON ADAPTIVE CRUISE CONTROL

PROBLEM OVERVIEW

Goal: Develop adaptive cruise control of an EV truck driving in a platoon

• Volvo VNR Electric 4x2 Tractors

.

- Preserving safety and desired inter-vehicle distance
 - Ensure **ride quality** safety distance host vehicle preceding vehicle 0 desired inter-vehicle distance 50 120 80

PROBLEM FORMULATION

- Penalize jerking, excessive breaking and poor inter-vehicle distance tracking
- Vehicle dynamics implemented in time domain
- Host vehicle must keep a minimum safety distance from a preceding vehicle

 $ext{minimize} \quad \sum_{i=0}^{N-1} \left(\omega_{ ext{j}} \Delta F_{ ext{t},i}^2 + \omega_{ ext{b}} F_{ ext{b},i}^2 + \omega_{ ext{d}} (d_{ ext{des}} - d_i)^2
ight)$ subject to $F_{t,i+1} = F_{t,i} + \Delta F_{t,i}$ $d_{i+1} = d_i + T_s(v_{\mathrm{p},i} - v_i)$ $v_{i+1} = v_i + rac{T_{\mathrm{s}}}{m_{\mathrm{eq}}}(F_{\mathrm{t},i}-F_{\mathrm{b},i}-F_{\mathrm{r},i})$ $s_{i+1} = s_i + T_s v_i$ $\zeta_{i+1} = \zeta_i - rac{T_{
m s}}{\eta_i E_{
m cap}} v_i F_{{
m t},i}$ $v < v_i < \bar{v}_i$ $\zeta \leq \zeta_i \leq ar{\zeta}$ $0 \leq F_{\mathrm{t},i} \leq F_{\mathrm{t},i}$ $0 \leq F_{\mathrm{b},i} \leq F_{\mathrm{b}}$ $F_{\mathrm{t},i}F_{\mathrm{b},i} \leq arepsilon_{\mathrm{F}}$ $d_{ ext{safe}} \leq d_i$ $x_0 = x_{\text{init}}$

CODE WORKFLOW

CODE WORKFLOW

VEHICLE PARAMETERS

```
function param = defineVehicleParameters()
    % Gravitational acceleration (m/s^2)
    param.g = 9.81;
    % Vehicle mass (kg)
    param.mv = 8000;
    % Mass factor (-)
    param.eI = 1.06;
    % Equivalent mass (kg)
    param.meq = (1+param.eI)*param.mv;
    % Projected frontal area (m^2)
    param.Af = 8.38;
    % Air density (kg/m^3)
    param.rhoa = 1.206;
    % Maximum traction force (N)
    param.FtMax = 20e3;
    % Maximum breaking force (N)
    param.FbMax = 10e3;
    % Battery's energy capacity (Wh)
    param.Ecap = 264e3;
    % Minimum vehicle velocity (km/h)
    param.vMin = 0;
    % Maximum vehicle velocity (km/h)
    param.vMax = 109;
    % Minimum SoC (-)
    param.SoCmin = 0.1;
    % Maximum SoC (-)
    param.SoCmax = 0.9;
    % Desired distance to preceding vehicle (m)
    param.ddes = 30;
    % Safety distance to preceding vehicle (m)
    param.dsafe = 5;
                         ...
```


VEHICLE PARAMETERS

function param = defineVehicleParameters() % Gravitational acceleration (m/s^2) param.g = 9.81;% Vehicle mass (kg) param.mv = 8000;% Mass factor (-) param.eI = 1.06;% Equivalent mass (kg) param.meq = (1+param.eI)*param.mv; % Projected frontal area (m^2) param.Af = 8.38;% Air density (kg/m^3) param.rhoa = 1.206;% Maximum traction force (N) param.FtMax = 20e3; % Maximum breaking force (N) param.FbMax = 10e3; % Battery's energy capacity (Wh) param.Ecap = 264e3; % Minimum vehicle velocity (km/h) param.vMin = 0;% Maximum vehicle velocity (km/h) param.vMax = 109;% Minimum SoC (-) param.SoCmin = 0.1;% Maximum SoC (-) param.SoCmax = 0.9; % Desired distance to preceding vehicle (m) param.ddes = 30; % Safety distance to preceding vehicle (m) param.dsafe = 5;...

```
% Motor efficiency (-)
param.eta = setupMotorEfficiency(param.FtMax);
% Traction force hyperbola (upper limit) (N)
param.FtMaxHyp = setupTractionForceHyperbola(param.FtMax);
% Air drag coefficient (-)
param.ca = setupAirDragCoeff();
% Rolling resistance coefficient (-)
param.cr = setupRollingResistanceCoeff;
end
```


VEHICLE PARAMETERS

function param = defineVehicleParameters() % Gravitational acceleration (m/s^2) param.g = 9.81;% Vehicle mass (kg) param.mv = 8000;% Mass factor (-) param.eI = 1.06;% Equivalent mass (kg) param.meq = (1+param.eI)*param.mv; % Projected frontal area (m^2) param.Af = 8.38;% Air density (kq/m^3) param.rhoa = 1.206;% Maximum traction force (N) param.FtMax = 20e3; % Maximum breaking force (N) param.FbMax = 10e3; % Battery's energy capacity (Wh) param.Ecap = 264e3; % Minimum vehicle velocity (km/h) param.vMin = 0;% Maximum vehicle velocity (km/h) param.vMax = 109;% Minimum SoC (-) param.SoCmin = 0.1;% Maximum SoC (-) param.SoCmax = 0.9; % Desired distance to preceding vehicle (m) param.ddes = 30; % Safety distance to preceding vehicle (m) param.dsafe = 5;

method	Description
'linear'	Piecewise linear
'nearest'	Piecewise constant, value from nearest data point
'next'	Piecewise constant, value from next data point
'previous'	Piecewise constant, value from previous data point
'spline' (default)	Piecewise cubic spline
'pchip'	Shape-preserving piecewise cubic spline

VEHICLE PARAMETERS - SPLINES

VEHICLE PARAMETERS - SPLINES

```
function caSpline = setupAirDragCoeff()
    dSample = [0, 50, 1e5];
    caSample = [0.15, 0.3, 0.3];
    caSpline = ForcesInterpolationFit(dSample,caSample,'linear');
end
function crSpline = setupRollingResistanceCoeff()
    vSample = [0, 140];
    crSample = [0.01, 0.02];
    crSpline = ForcesInterpolationFit(vSample,crSample);
end
```

% Motor efficiency (-)
param.eta = setupMotorEfficiency(param.FtMax);
% Traction force hyperbola (upper limit) (N)
param.FtMaxHyp = setupTractionForceHyperbola(param.FtMax);
% Air drag coefficient (-)
param.ca = setupAirDragCoeff();
% Rolling resistance coefficient (-)
param.cr = setupRollingResistanceCoeff;
end

```
function etaMotorSpline = setupMotorEfficiency(FtMax)
    FtSample = 0:0.1*FtMax:FtMax;
    etaSample = [0.835, 0.865, 0.9, 0.85, 0.79, 0.75, 0.72, 0.72, 0.72, 0.72, 0.72];
    etaMotorSpline = ForcesInterpolationFit(FtSample,etaSample);
end
function FtMaxHypSpline = setupTractionForceHyperbola(FtMax)
    vSample = [0.25, 0.4, 0.6, 0.8, 1.0]*kmh2ms(140);
    FtMaxHypSample = [1.0, 0.67, 0.43, 0.32, 0.28]*FtMax;
    FtMaxHypSpline = ForcesInterpolationFit(vSample,FtMaxHypSample);
```

end

PROBLEM FORMULATION & SOLVER GENERATION

PROBLEM FORMULATION

```
function model = generateACCProfile(trip, param)
% Assume variable ordering zi = [du(i); u{i}; x{i}] for i=1...N
% zi = [Ft(i+1) - Ft(i); Ft(i); Fb(i) d(i); v(i); s(i); SoC(i)]
% pi = [vp(i); vMax(i); vMin(i); alpha(i)]
   %% Problem dimensions
   nx = 4;
   nu = 2;
   ndu = 1;
   np = 4;
   nh = 4:
   model.N = trip.horizon/trip.Ts; % horizon length
   model.nvar = nx + nu + ndu; % number of variables
   model.neq = nx + ndu; % number of equality constraints
   model.nh = nh; % number of inequality constraints
   model.npar = np; % number of runtime parameters
   %% Objective function
   % R(1,1) penalizes jerking; R(2,2) penalizes braking; Q penalizes poor
   % tracking (i.e. catch up) of the preceding vehicle
   R = [0.01, 0;
        0, 0.1];
   Q = 1;
   model.objective = @(z) [z(1);z(3)]'*R*[z(1);z(3)] + Q*(z(4) - param.ddes)^2; ...
```


PROBLEM FORMULATION

model.xinitidx = nu+ndu+1:nu+ndu+nx;

```
%% Dynamics, i.e. equality constraints
model.eq = @(z,p) [z(1) + z(2);
                  z(4) + trip.Ts*(p(1) - z(5));
                  z(5) + trip.Ts/param.meq*(z(2) - z(3) - param.cr(z(5))*param.mv*param.g*cos(p(4))
                       - param.mv*param.g*sin(p(4)) - 0.5*param.ca(z(4))*param.Af*param.rhoa*z(5)^2);
                  z(6) + trip.Ts * z(5);
                  z(7) - trip.Ts*z(5)*z(2)/(3600*param.eta(z(2))*param.Ecap)];
% adding a row for Ft(i+1) = Ft(i) + dFt(i)
model.E = [0 1 0 0 0 0; zeros(nx,nu+ndu), eye(nx)];
%% Inequality constraints
% Upper/lower variable bounds lb \leq z \leq ub
%
                            inputs
                                                                    states
                                               l d
                        Ft Fb
               dFt
                                                                           S
                                                                                     SoC
model.lb = [-param.FtMax, 0, 0., 0., kmh2ms(param.vMin), 0., param.SoCmin];
model.ub = [param.FtMax, param.FtMax, param.FbMax, +inf, kmh2ms(param.vMax), +inf, param.SoCmax];
% Nonlinear inequalities hl \leq h(z,p) \leq hu
model.ineq = @(z,p) [z(5) - p(2);
                    p(3) - z(5);
                    z(2) - param.FtMaxHyp(z(5));
                    param.dsafe - z(4)];
% Upper/lower bounds for inequalities
model.hu = [0, 0, 0, 0];
model.hl = [-inf, -inf, -inf];
% Initial and final conditions
```


SOLVER GENERATION

...

```
%% Generate FORCESPRO solver
% Define solver options
codeoptions = getOptions('FORCESNLPsolver');
codeoptions.printlevel = 0;
codeoptions.nlp.compact_code = 1;
```

% Generate code FORCES_NLP(model, codeoptions); end

SIMULATION

SIMULATION

```
function sim = runSimulation(trip, param, model)
% Define spatially and temporaly distributed (i.e. stage-dependent) parameters
% Preceding vehicles's speed profile
sim.vp = setupPrecedingVehicleSpeed(trip);
% Road speed limits and slope angles
[vMaxRoad, vMinRoad, alpha] = setupRoadParameters(trip);
% Initialize the problem
problem.x0 = zeros(model.N*model.nvar,1);
sim.kMax = trip.length*60/trip.Ts;
sim.X = zeros(nx,sim.kMax+1);
sim.U = zeros(nu,sim.kMax);
```

% X(1) = [d(1); v(1); s(1); SoC(1)] sim.X(:,1) = [trip.initDist; kmh2ms(trip.initSpeed); 0; trip.initSoC]; ...

SIMULATION

```
% Update state and control vector
if exitflag == 1
  Z = solverout.x01;
  sim.dU(:,k) = Z(1);
  sim.U(:,k) = Z(2:nu+ndu);
  update = model.eq([sim.dU(:,k);sim.U(:,k);sim.X(:,k)], problem.all_parameters(1:np))';
  sim.X(:,k+1) = update(ndu+1:model.neq);
  if k < sim.kMax
      sim.U(:,k+1) = update(1);
  end
else
  error('Some problem in solver');
end
```

end

CONTROL PERFORMANCE

ACC Workshop on Real time NMPC - From Fundamentals to Industrial Applications, June 7, 2022, Copyright (C) Embotech AG

*

CONTROL PERFORMANCE

Road profile

FORCESPRO takes **42 iterations** and **0.63ms** to solve the problem on average

Simulations performed on x-64-based Intel® Core™ i7-10750H CPU @ 2.60GHz with 16GB RAM

embotech*

ACC Workshop on Real time NMPC – From Fundamentals to Industrial Applications, June 7, 2022, Copyright (C) Embotech AG

embotech.com

