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Abstract
Current and future trends for launch vehicles include increasingly stringent requirements for mission re-
sponsiveness and adaptability. In a previous FLPP activity we developed a tool to analyze state-of-the-art
approaches for on-board optimized guidance. FORCES Pro was used in the backend to generate fast
embeddable optimization solvers. This paper describes the implementation of the simulation tools, the
guidance and control algorithms, and the initial steps taken to qualify the flight software for demonstrator
vehicles currently under development by FLPP and INCAS. Our software has been used to simulate thou-
sands of end-to-end scenarios involving nominal and off-nominal conditions, different levels of dispersion,
mid-flight target changes and partial engine failures. All missions in the test plan completed successfully
with adequate landing states and constraint satisfaction throughout the entire flight.

1. Introduction

To increase the science return of space missions, and improve the access to space, launchers and spacecrafts must satisfy
increasingly stringent requirements for mission responsiveness. The vehicles must be able to adapt to failures, abort
scenarios, modification of the target orbit, or varying orbital pointing constraints among others. In addition, reusable
launch vehicles require pin-point landing capabilities and similar adaptability to partial failures and modifications
of the landing target. To date, however, each launch must be carefully planned with large advance, accounting for
wide tolerances on all engineering aspects; moreover, launch windows are heavily constrained by the actual weather
that can be known only a few hours before. Recent advances on algorithms and embedded processing power are
changing this landscape thanks to what is known in literature as computational guidance and control.10 In the last
few years private space companies like SpaceX3 and Blue Origin1 are demonstrating the feasibility and the advantages
of reusable launchers compared to expendable vehicles. One of the key technologies that is enabling this paradigm
shift is numerical optimization.6 To advance, also in Europe, the use of on-board and real-time optimization for space
application, in a previous FLPP activity we developed a tool to analyze various state-of-the-art approaches for the
powered descent phase and on-orbit reorientation. The results demonstrated the feasibility and the potential of both
nonlinear programming formulations and convexification approaches for real-time implementation. In both scenarios,
FORCES Pro was used in the back-end to generate fast embeddable optimization solvers. In parallel, FLPP and
INCAS are developing several re-usable flying testbeds for maturing endo-atmospheric ascent, fly-back strategies,
powered descent, and pinpoint landing technologies. This paper describes the implementation of the simulation tools,
the guidance and control algorithms, and the initial steps taken to qualify the flight software for these demonstrator
vehicles. In this work the optimal trajectory generation algorithms have been extended to handle both the ascent
and descent phases of a mission. The entire GNC is coded in C and implemented in real-time Linux running on the
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target flight computer (Aries PC104 featuring an Intel Atom E3845 CPU at 1.91 GHz with 4 GB of memory). A
synchronous task with the highest priority executes the position and attitude control, state estimation and the mission
and vehicle management logic. A separate thread runs an asynchronous and lower priority task that generates a new
flight trajectory on-board. This is triggered whenever the vehicle drifts too far from the current trajectory due to
uncertainty in actual flight conditions, or whenever there is a change in flight phase (e.g. ascent and descent). On-board
trajectory re-generation can also be triggered if there is a change in target command or a detected failure in the vehicle.
A high-fidelity simulator used for functional validation has been deployed on a Speedgoat standalone computer to build
a real-time vehicle simulator. This is connected to the flight computer to form a facility for validating the real-time
software. Our software has been used to simulate thousands of end-to-end scenarios involving nominal and off-nominal
conditions, different levels of dispersions, mid-flight target changes and partial engine failures. All missions in the test
plan completed successfully with adequate landing states and constraint satisfaction throughout the entire flight.

This paper is organized as follows. In Section 2, we detail the general mission profile that was the focus of
the current study. In Section 3, the developed guidance and control architecture is delineated. Section 4 and 5, we
specify the vehicle modeling and the mathematical formulation of the guidance optimization problem, respectively. In
Section 6, the developed software framework is presented, while, in Section 7, we detail the testing framework and
analyze the test results. Finally some conclusions are drawn in Section 8.

2. General Mission Profile

The vehicle considered in this project is called Demonstrator for Technology Validation (DTV) and it is currently under
development by INCAS in the framework of FLPP3. It is a Vertical Take Off and Landing (VTOL) aircraft that can
be powered by one or three jet engines. However, in this paper we will focus on the single engine configuration. A
CAD rendering of the two vehicles is shown in Figure 1. This vehicle was chosen because being powered by a jet

Figure 1: The DTV vehicle: 61.6 [Kg] single engine or 126.62 [Kg] triple engine configuration, 1.2 [m] total height.
Courtesy of INCAS.

engine makes it easier to operate and allows for a quicker turnaround between flight tests. Nevertheless, its dynamics
shares many similarities with the ones of small test rockets. Two notable examples are the “Grasshopper"14 and the
“Xombie".15 The first one was used in early experiments for the development SpaceX’s rocket landing GNC, while
the second one flew for the ADAPT project.13 The Xombie was built by Masten Space Systems and was instrumental
in testing the G-FOLD algorithm and the terrain relative navigation system that will be used on NASA’s Mars 2020
mission.

One of the objectives of this project is to simulate flight missions of increasing complexity to gradually evaluate
performance and assess the reliability of the proposed G&C architecture. The typical mission sequence is depicted in
Figure 2 and it comprises four main flight phases:

1. vertical takeoff, to clear the launch pad;

2. ascent, to set the vehicle to the desired state (e.g. altitude, velocity, etc.) for the powered descent;

3. descent, to steer the VTOL craft above the target position;

4. vertical landing, to touchdown on the desired spot.
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Figure 2: Typical mission profile, in-plane example. We will denote time at takeoff as t0 and at the end of each phase
as t1, t2, t3, and t4, respectively.

Phases 1 and 4 are managed by a specialized guidance scheme for takeoff and landing which does not involve on-line
optimization. The trajectories for the ascent and the descent phases 2 and 3 instead are computed by real-time optimal
guidance. All trajectories are then tracked by the same low-level position and attitude controller. Regardless the specific
mission scenario, the objective of the optimal guidance is to minimize fuel consumption during flight, while accounting
for vehicle’s limitations and flight path constraints. However, if there is not enough fuel to reach the desired landing
pad, the objective switches to minimizing the landing error. This means that instead of aiming at a specific point in
space, the optimal guidance will compute a trajectory to steer the vehicle as close as possible to the desired landing
target with the available fuel.

3. Guidance and Control Architecture

Besides vehicle and path constraints, sensors noise and model-to-plant mismatches, the proposed guidance and control
system needs to be able to handle unpredictable wind gusts, partial faults in the propulsion system and mid-flight
changes in landing target. To this end the developed G&C architecture can be decomposed into three main blocks:
Mission and Vehicle management (MVM); Guidance and Control. Their interconnection is shown in Figure 3. In this
work we did not address the Navigation component in the GNC scheme. Therefore, inputs to the G&C block are the
filtered vehicle’s state and configuration files to set the initialization parameters and the mission profile. The outputs
include the control commands to steer the vehicle towards the target, and the flight log files to store the GNC data for
post flight analysis.

Mission
& Vehicle

Management

Guidance

Position
and attitude

control

Vehicle’s state
from VTOL

Control commands
to VTOL

Con�guration Flight log

Figure 3: GNC Block Diagram
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3.1 Mission and Vehicle Management

One of the design objectives for this project is to develop a single software solution to handle various mission scenarios.
In this regard the MVM has a crucial role as it is in charge of ensuring the correct mission execution. The two main
functions are a flight mode selector (e.g. idle, takeoff, optimal, landing), modeled as a state machine, and a target
manager that handles exceptions (e.g. tracking errors, faults, retargeting) during the optimal guidance phase and
changes the guidance targets.

The available flight modes are: engine off (mode -1); engine startup (mode 0); takeoff guidance (mode 1);
optimal guidance (mode 2); landing guidance (mode 3); idle (mode 4). Their interconnection and the signals triggering
state transitions are depicted in Figure 4. The vehicle starts always from mode -1 with the engine off. The start signal
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Figure 4: Mode transitions operated by the flight mode selector

kicks off the beginning of a mission with the engine entering its startup phase. When in mode 0, while the engine
warms up, the optimal solver computes the first trajectory towards the ascent target. When the engine is ready and an
optimal trajectory is available, the vehicle is cleared for takeoff, mode 1. After a vertical ascent to a predefined altitude
(e.g. 4.5[m]), the flight mode selector switches to mode 2 where any new trajectory is generated by solving an optimal
guidance problem. At the end of the descent phase, when the vehicle crosses a predefined altitude (e.g. 4[m]), the
landing guidance (mode 3) is engaged. At this point the touchdown signal triggers the switch to mode 4 where the
vehicle is in idle (on the landing pad with the engine throttled to its minimum). Finally, after a predefined amount
of time or user input, the shutdown signal switches off the engine. As a safety precaution, the first optimal trajectory
is computed during the warm up phase. If after a predefined amount of time a trajectory is not available, the vehicle
goes directly into idle rather than starting to takeoff. On top of that, while in mode 2, if the optimal guidance returns
an exception code at any point, an emergency landing is triggered and the landing guidance steers the vehicle to the
closest abort pad available.

The other major MVM component is the target manager. In nominal conditions it selects the next target from
the list created during the mission definition and it calls the optimal solver to compute a new trajectory when needed.
It is worth noting that to account for the time it takes to compute a new trajectory, the vehicle’s state used by the
optimal path planner is a prediction of the aircraft’s position at the time the next trajectory will be actually flown. In an
off-nominal situation, when, due to wind or other disturbances, the vehicle deviates too much from the prescribed path,
a new trajectory for the same target will be requested. This improves landing accuracy and reduces fuel consumption
as it avoids excessive corrective actions from the controller. In case of a partial fault in the propulsion system a new
trajectory will be computed accounting for the current vehicle’s specifications. Finally, if at a certain point during the
mission there is a change in the desired landing target, the optimal guidance will update the flight path to reach the new
goal.

3.2 Guidance

As mentioned earlier we employ three guidance modes. The takeoff guidance to clear the launchpad is very simple:
it generates a constant vertical velocity reference (e.g. 3[m/s]) with the lateral velocity set to zero and the horizontal
position matching the takeoff pad. The optimal guidance uses the inputs from the MVM to call FORCES Pro and
generate a trajectory. More details about this process will be given in Section 5 where we describe the optimal problem
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formulation. The landing guidance sets a constant reference in position that corresponds to the landing pad, while
enforcing a predefined vertical landing speed (e.g. 0.5[m/s]). In case the aircraft has not enough fuel to reach the
desired landing pad, instead of generating a constant reference to match a specific position, the landing guidance will
only zero out the remaining lateral velocity.

3.3 Control

The position and attitude feedback controllers are based on an LQR design augmented by tunable feed forward terms
to help compensate for atmospheric and ram drag. The error between the actual and the desired position defines the
reference for the position controller. The resulting force vector is then used to compute the desired angles. The attitude
error is the input that the attitude controller uses to compute the desired torques. By means of a static allocation matrix,
the desired forces and torques are then mapped into commands for the propulsion system, a jet engine in this case.

4. Vehicle Modeling

4.1 Notation And Reference Frames

Here we introduce the notation and the reference frames that will be used in the following. Given the short range and
flight duration of the mission scenarios envisioned for this activity, it is safe to assume a flat and non-rotating Earth
model. Therefore we define the inertially-fixed frame I with its origin located at the launch site, where the “Up, East,
North" convention is used. The body-fixed frame B instead is placed at the Center of Mass (CoM) with its x axis along
the vehicle’s vertical axis, that is parallel to the thrust vector when there is no deflection on the control vanes. When
there is no rotation between the two frames, the body frame is oriented with respect to the inertial frame such that the
vehicle’s x, y, and z axes are aligned with the Up, East, and North axes, respectively. Inertial and body frames are
depicted in Figure 5. The state of the vehicle is defined as X = [m, rI, ṙI, qB→I, ωB]> ∈ R14, where the dependence
on time t is omitted. m represents the mass, rI, and ṙI are the position and velocity vectors expressed in the inertial
frame, respectively, qB→I is a unit quaternion representing the rotation of the body frame relative to the inertial frame
(i.e. vehicle’s attitude), and ωB is the angular velocity vector in the body frame. We denote by ei a unit vector pointing
along the the ith axis. Unless differently specified, ‖ · ‖ represents the two-norm, and SI units will be used throughout
the document.

East

Up

North

x

y

z

I

B

Figure 5: Inertial I and body B frames

4.2 Equations of Motion

Thanks to its mechanical characteristics (compact body and landing gear structure) we can model the targeted vehicle
as a rigid body. The motion is determined by the forces and torques due to aerodynamics, gravity and the propulsion
system. The model has a translational and a rotational component that can be taken into account jointly or separately.
For guidance and control design, we refer to 3-DoF (three degrees of freedom) dynamics when considering only the
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equations of motion (EOM) concerning the translational part, while by 6-DoF (six degrees of freedom) dynamics we
imply that also the rotational part is included.

The mass evolution is considered to be proportional to the thrust magnitude generated by the engine as:

ṁ(t) = −α‖TB(t)‖ (1)

where TB(t) is the resultant thrust vector and α [s/m] is a mass depletion proportionality constant. Following Newton’s
second law, the vehicle’s acceleration expressed in the inertial frame is defined as:

r̈I(t) =
1

m(t)
FI(t) + gI (2)

where FI represents the combined action of the forces acting on the vehicle due to the propulsion system and the
aerodynamics, and gI is the gravitational acceleration. The expected maximum altitude that can be reached by the
DTV is 3500 [m], hence it is safe to assume a constant gravitational field gI = [−g0 0 0]>, where g0 = 9.81 [m/s2]
is the average gravitational acceleration at sea level on Earth. Equation (2) represents the 3-DoF model. Velocity and
position are obtained by single and double integration, respectively and, in this case, the thrust vector can also be used
as a proxy for the vehicle’s orientation.

Although Euler angles are a very intuitive way to represent rotations and involve only three parameters, this sim-
plification can lead to a phenomenon known as “gimbal lock" resulting in the loss of a degree of freedom. Hence, here
we parameterize the rotation of the body frame relative to the inertial frame as a unit quaternion. This representation
increments the parameters to four, however it prevents the numerical issues associated with Euler angles. The attitude
of the vehicle is then defined as:

qB→I ,
[

cos(ξ/2)
sin(ξ/2)n̂

]
=


q1
q2
q3
q4

 (3)

where the “scalar first" convention is used. ξ is a placeholder for a rotation angle and n̂ is the unit vector around which
the rotation is performed. We can now define the Direction Cosine Matrix (DCM) that encodes the transformation of a
vector from the inertial to the body frame as:

CI→B(t) =

1 − 2(q2
3 + q2

4) 2(q2q3 + q1q4) 2(q2q4 − q1q3)
2(q2q3 − q1q4) 1 − 2(q2

2 + q2
4) 2(q3q4 + q1q2)

2(q2q4 + q1q3) 2(q3q4 − q1q2) 1 − 2(q2
2 + q2

3)

 (4)

with its inverse transformation expressed as:

CB→I(t) , C−1
I→B

(t) = C>
I→B

(t) (5)

The quaternion kinematics and the attitude dynamics can now be defined as:

q̇B→I(t) =
1
2

Ω(ωB(t))qB→I(t) (6a)

ω̇B(t) = J−1
B (t)

(
MB(t) − [ωB(t)×]JB(t)ωB(t)

)
(6b)

where JB(t) is the inertia tensor, and MB(t) represents the combined action of all torques acting on the vehicle expressed
in the body frame. Ω(ξ) and [ξ×] are two skew-symmetric matrices defined for a generic vector ξ ∈ R3 as:

Ω(ξ) =


0 −ξ1 −ξ2 −ξ3
ξ1 0 ξ3 −ξ2
ξ2 −ξ3 0 ξ1
ξ3 ξ2 −ξ1 0

 , [ξ×] =

 0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0

 .
Equation (2) together with equations (6) completely define the EOM for the 6-DoF rigid body dynamics.

As mentioned above, forces and torques acting on the body frame are the sum of the effects generated by the
propulsion system and the aerodynamics, other than from the constant gravitational field. Specifically:

FI(t) = CB→I
(
TB(t) + AB(t)

)
(7)

MB(t) = [`T (t)×]TB(t)︸          ︷︷          ︸
MTB(t)

+ [`P(t)×]AB(t)︸          ︷︷          ︸
MAB(t)

(8)
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where TB(t) is the resultant thrust vector generated by the engine, and AB(t) is the sum of the aerodynamic forces
acting on the vehicle. `T represents the distance between the CoM and the hinge point of the control vanes, `P is the
lever arm between the CoM and the Center of Pressure (CoP), while MTB(t) and MAB(t) represent the torques around
the CoM due to the propulsion system and the aerodynamic effects, respectively.

The two aerodynamics effects that will be considered here are the “atmospheric drag" and the “ram drag". While
the first one is related to the geometry of the vehicle, the second one is an effect introduced by the interaction of the jet
engine’s air intake with the crosswind. These forces are modeled as:

DB(t) := −
1
2
ρCDS D‖vB(t)‖vB(t) (9a)

RB(t) := −
[

0
ρAeve(t)[e2 e3] · vB(t)

]
(9b)

AB(t) := DB(t) + RB(t) (9c)

where ρ is the air density, CD is the drag coefficient, S D is the reference area, Ae is the air intake area, ve is the exit
speed of the airflow from the engine, and vB = CI→B ṙI −wB is the vehicle’s velocity relative to the wind speed wB in
the body frame.

4.2.1 Simplifications and Assumptions

While in simulation the focus is on the realism of the modeled environment and vehicle (i.e. the Earth at low altitude
and a jet powered VTOL aircraft), for the guidance and control design the target is to use models that are representative
enough to ensure satisfactory flight performance, while keeping the problem formulation computationally tractable. To
this end, we can consider a reduced set of equations of motion, and simplify the models for the forces acting on the
vehicle.

To what concerns the first point, the 6-DoF model is more representative of the actual motion of the vehicle, but
this comes with a significant increase in the complexity of the optimal guidance problem. On the other hand a 3-DoF
formulation, being a coarser representation, may generate trajectories that require additional corrective actions from
the low-level controller to stay on the computed path, hence increasing the fuel consumption. To what concerns the
second point, the simplifications and assumptions that can be made when modeling the forces acting on the vehicle are
listed below.

Propulsion system: The small perturbation torque due to the rotation of the jet engine’s internal components is
not considered in the guidance design as it can be compensated by the low level controllers. The same applies for noise
and offsets in the generated thrust vector, as they are assumed to be relatively small compared to the control commands.

Aerodynamic effects: Due to the relatively low altitude and speed range at which the flights are planned, the
guidance algorithm will not consider atmospheric nor ram drag. However, jet engine’s performance losses due to the
altitude will be accounted for in the problem formulation. Other aerodynamic forces like lift can also be neglected due
to the non-lifting shape of the body and the low speed at which the vehicle will fly.

4.2.2 State and control constraints

The guidance system must ensure that the computed trajectory does not require more fuel than available, hence by
denoting as mdry the dry mass, the first constraint can be written as:

m(t) ≥ mdry (10)

Defining the tilt angle as the angle between the x-axis in the body frame and the “Up"-axis in the inertial frame, we can
express a tilt angle constraint as:

e1 ·CB→I(t)e1 ≥ cos(θmax) (11)

where θmax is the maximum allowed tilt angle. Avoiding large tilting angles increments operational safety (especially
close to the ground) and helps to mimic the limitations on attitude that would arise from having a terrain relative
navigation system or other sensors that require pointing to the ground at all times during flight. In the 3-DoF case this
constraint cannot be directly enforced since the model does not consider attitude. Instead, we limit the resultant thrust
vector’s tilt angle. To prevent excessive rotational speed, the angular rates can be constrained as:

‖ωB(t)‖ ≤ ωmax (12)

where ωmax is the maximum allowed angular velocity. This cannot be enforced in the 3-DoF formulation. To avoid too
shallow trajectories, that could result in hitting obstacles on the ground, we restrict the path of the vehicle to evolve on
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the inside of a cone with the origin placed at the launchpad during ascent and at the landing pad during descent. In the
literature, this is known as “glide-slope" constraint and can be expressed as:

e1 · (rI(t) − rI(t0,4)) ≥ tan(γ)[e2 e3] · ‖rI(t) − rI(t0,4)‖ (13)

where γ is the angle with the horizontal made by the cone boundary. Excessive structural stress on the body, can be
avoided by limiting also the linear velocity as follows:

‖ṙI(t)‖ ≤ vmax (14)

where vmax is the maximum allowed speed. To what concerns the control variables, there are limitations on the max-
imum and minimum thrust that the engine can generate and restrictions on the deflection of the control vanes. These
are detailed by equations (15) and (16), respectively:

0 < Tmin ≤ ‖TB(t)‖ ≤ Tmax (15)

e1 · TB(t) ≥ cos(δmax)‖TB(t)‖ (16)

where Tmin and Tmax are the lower and upper bounds on each engine’s thrust, and δmax is the maximum allowed thrust
deflection angle. In the DTV, the engine is fixed and δ(t) is the result of the combined action of the two control vanes
bending the jet stream at the turbine’s exit. The dynamics of the jet engine, the thrust losses due to the altitude and the
drag induced by the control vanes cannot be neglected. These phenomena can be accounted for by implementing the
constraints expressed by (17) and (18), respectively.

Ṫmin ≤ ṪB(t) ≤ Ṫmax (17)

e1 · TB(t)(1 + νD) ≤ Tmax(1 − e1 · rI(t)β) (18)

where Ṫmin and Ṫmax are the minimum and maximum thrust rates, while β and νD are proportionality constants encoding
the losses due to the altitude and the control vanes drag.

5. Optimal Guidance Problem Formulation

The optimal guidance described here builds on the one developed during our previous FLPP activity for the Constrained
Powered Descent (CPD) and Constrained Attitude Guidance (CAG) scenarios. Detailed information about the CPD
and CAG scenarios can be found in.8 The flight of a rocket-like vehicle shows a coupling between the translational
and rotational motion as the aircraft needs to tilt itself to move between two points in space. The rotational dynamics,
however, evolves faster than the translational one. Hence, using a 3-DoF guidance is a viable option if there is a
controller that acts hierarchically on a lower level, but at a faster pace, to handle the other degrees of freedom not
accounted for at the guidance level. The main advantages of implementing a 3-DoF guidance are that the problem is
easier to solve and it is possible to use a convex formulation with theoretical guarantees on solver’s convergence as
detailed in.5 However, it is worth noting that when using the convex formulation, the problem’s final time is fixed.
Therefore a Time of Flight (ToF) search is necessary to find the the optimal time (that is also the one for which the
lossless convexification holds) ensuring minimum fuel consumption. This search is time consuming and the analysis
we performed showed that our nonlinear solver, not requiring a separate ToF search, was faster and equally reliable in
computing the optimal trajectory. A way to avoid the ToF search in a convex formulation setting is to use a lookup table
with precomputed ToFs and interpolate on that depending on the actual initial conditions12 . This method significantly
reduces the computational time for the 3-DoF convex guidance, however, in off-nominal conditions the precomputed
ToF table would not be accurate anymore.

Other than the free final time, including aerodynamic effects and the rotational dynamics break the lossless con-
vexification validity assumptions. As shown by recent research in 17 and 16 , the successive convexification technique
can be used to address these issues. However, even though the single problems are approximated using a convex for-
mulation, a stopping criteria for the iterative process, that depends on the specific problem, must be defined by the
algorithm designer. Moreover, when the original problem is strongly nonlinear, the convex approximation pays a non
negligible optimality price when compared to solving the nonlinear problem directly.

After evaluating the approaches described above, we observed that a non-linear 3-DoF guidance setting would
provide the best combination of flexibility, quality of the solution and reliability for the missions being considered for
DTV. Therefore, it has been selected as the default algorithm for our trajectory generation engine. For both ascent
and descent phases, the 3-DoF nonlinear and free-final-time optimal guidance problem can be expressed as detailed in
Problem 1

8
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Problem 1 : 3-DoF, Non-Convex, Continuous-Time, Free-Final-Time, Minimum-Fuel Problem

Cost Function

minimize
t f ,TB(·)

∫ t f

t0
‖TB(t)‖ + λ1‖ṪB(t)‖2 + λ2η(t)2 dt

subject to:
(19)

Boundary Conditions

m(t0) = m0 (20)
rI(t0) = rI,0 ‖rI(t f ) − rI, f ‖ ≤ rtol (21)
ṙI(t0) = ṙI,0 ‖ṙI(t f ) − ṙI, f ‖ ≤ ṙtol (22)

Point-mass Dynamics

ṁ(t) = −α‖TB(t)‖ (23)

r̈I(t) =
1

m(t)
FI(t) + gI (24)

State Constraints

e1 · (rI(t) − rI(t0, f )) ≥ tan(γ) ‖ [e2 e3] · (rI(t) − rI(t0, f )) ‖ (25)
‖ṙI(t)‖ ≤ vmax + η(t) (26)

η(t) ≥ 0 (27)

Control Constraints

0 ≤ Tmin ≤ ‖TB(t)‖ ≤ Tmax (28)

Ṫmin ≤ ṪB(t) ≤ Ṫmax (29)
e1 · TB(t) ≥ cos(θmax)‖TB(t)‖ (30)

e1 · TB(t)(1 + νD) ≤ Tmax(1 − e1 · rI(t)β) (31)

where the subscripts 0 and f indicate initial and final values, respectively. From our previous work it emerged that small
regularization terms have a significant impact on the convergence speed (up to three times faster), hence it is used also
here. λ1 and λ2 are scalar weighting factors for the regularization term ‖ṪB(t)‖2 and the slack variable for the velocity
constraint η(t), respectively. The slack variable η(t) is used to make the velocity constraint soft, allowing the solver to
temporary violate that bound at an increase of the cost objective. Moreover, it prevents infeasibility when the initial
speed is greater than or close to the maximum allowed one. As mentioned earlier, if during the descent phase there is
not enough fuel to reach the desired target, the optimal problem is reformulated as Minimum-Error landing. The cost
function (19) is substituted by

minimize
t f ,TB(·)

∫ t f

t0
λ1‖ṪB(t)‖2 + λ2η(t)2 dt + ‖ [e2 e3] · (rI(t f ) − rI, f ) ‖ (32)

the final position constraint (21) is modified to account only for the altitude above the landing pad, the fuel limit (10)
is explicitly included in the problem statement, and the glideslope constraint is removed.

The continuous problem is then discretized using a fourth order explicit Runge-Kutta integrator. The trajectory
generated by the optimal guidance is a timestamped list of setpoints for the low-level controller. To reduce the compu-
tational burden on the CPU, the length of the list amounts to a few tens of elements. To provide a smoother reference to
the low-level controller, the computed trajectory is resampled using linear interpolation. The steps of the interpolated
trajectory will then match the sampling time of the low level controller.

6. Software Framework

One of the key outcomes of the current and past FLPP activities is to develop a unifying framework to design, evaluate
and analyze performance of novel G&C algorithms. The software framework is based on a modular user interface,

9
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trajectory generation and validation engines that can be extended depending on the mission scenario. The diagram in
Figure 6 depicts the software architecture and its main components.

User Interface

Trajectory Optimizer Validation Engine

Probelm formulation
(CVX or NLP)

Code generator
(solver)

Functional
Engineering

Simulator

Software
Validation

Facility

Report generator

Mission de�nition FORCES options Validation options

Figure 6: Architecture of the software framework

6.1 User Interface

This is a lightweight MATLAB-based text interface that allows the user to define the mission profile and modify
several settings in the guidance algorithm. The interface allows also to configure the validation method by selecting
the simulation environment and the report generation options.

6.2 Trajectory Generation Engine

This block is the core of our software. It is based on FORCES Pro7 to create the customized code that generates
the guidance trajectories by solving an optimization problem. Depending on the formulation, FORCES Pro can solve
convex or nonlinear problems generating a highly customized solver tailored for deployment on resource-constrained
embedded systems. The generated code uses only static memory allocation, it is MISRA-C compliant, and it does
not depend on external libraries. As illustrated in Figure 7, the solver design follows a client/server architecture in
which the user defines the optimization problem on its machine, and the server returns the solver that can be executed
on a development PC for testing or deployed on the embedded hardware. Users can interface with FORCES Pro via
MATLAB or Python. Alternatively, optimization problems can also be defined using the YALMIP modeling language.9

In this work we used the MATLAB interface to obtain the solver’s C code and wrap it into a custom Simuink S-Function
for easy integration in our functional engineering simulator and software validation facility.

Figure 7: FORCES Pro design flow. A customized solver implemented in library-free C code is generated for every
problem description.
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6.3 Validation Engine

This component of the software framework provides both functional and software validation capabilities. Mission
scenarios can be simulated in Simulink using a Functional Engineering Simulator (FES) with a model of the flight
software in-the-loop, or on a Software Validation Facility (SVF) with a real-time simulator and a flight processor-in-
the-loop setup. The simulation output is then processed to display plots and metrics relevant to the mission scenario
and the software implementation.

6.3.1 Functional Engineering Simulator

The FES is built around Simulink in a modular and expandable fashion in order to support different vehicles and
environment models, as well as multiple guidance and control architectures. On the base layer there are initialization
classes defining the static properties that do not change between mission scenarios. As an example, the dry mass
and the maximum wet mass are always constant for a given vehicle. From the user interface a different initialization
class can be loaded to simulate a different vehicle or planet without having to make changes to the blocks. The layer
above the initialization classes is populated by the custom subsystems that make embotech’s space simulation library
(ESSL). The library contains physical subsystems, software subsystems, axes transformations and utility blocks. The
subsystems are arranged to simulate the G&C algorithms, the vehicle and the environment. Finally, the Simulink
diagram at the top level links these models to build the closed loop simulation environment. At the end of a simulation
the logged vehicle and the GNC status is saved for post flight analysis and displaying plots.

6.3.2 Software Validation Facility

The goal of the SVF is testing the flight software on a setup that is closer to the actual flight configuration. To this
end, we utilized two different computers: one simulates, in real-time, the vehicle dynamics, the environment and the
sensors while the flight software is executed on the other one. The two computers are connected in closed-loop in order
to exchange the vehicle’s state and the control commands. Additionally, a development PC is used for code generation
and deployment, simulation control, logs recovery and data analysis.

The code deployed on both simulation computers is auto-generated from the same Simulink models that integrate
the FES. As a result, any change to the FES is mirrored on the deployed code. The code generation and deployment of
vehicle simulator and the flight software is completely automated. The switching between simulation platforms (FES
and SVF) can be done through the user interface with one line of code.

Although the developed SVF is flexible to changes in the simulation computers and communication interface,
the specific setup implemented in this project is depicted in Figure 8. The vehicle, environment and sensors are
simulated on a dedicated Speedgoat4 computer. The platform running the flight software is the On-Board Computer
(OBC) used for the DTV. This OBC features an Atom E3845 CPU with 1.9[GHz] maximum clock speed and has
4[GB] RAM. Debian Linux with a PREEMPT_RT real-time kernel patch11 is installed on the OBC. A serial RS232
interface implements the communication channel between the Speedgoat and the OBC. Both computers are connected
via Ethernet to a development PC for data logging and post flight analysis.

CONTROL COMMANDS

DEVELOPMENT PC

DTV MEASURED STATE

ETHERNET ETHERNET

R232

R232

Figure 8: Setup for the Software Validation Facility
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The flight software runs three different tasks in parallel. The one with the highest priority is the periodic G&C,
containing he MVM, as well as the position and attitude controllers and lower level functions. The optimal solver
is executed asynchronously on-demand as a lower priority task to avoid blocking other critical functions. Finally, a
data logging task is run with the lowest priority in order to prevent any interference with the flight control threads.
The static footprint of the generated flight software is 3.26[MB], making it amenable to on-board implementation on
a wide variety of embedded platforms. Simulating different scenarios does not requires code recompilation since both
platforms load the mission parameters from a text file.

7. Testing Framework

In this project we adopted a Continuous Integration (CI) framework to constantly monitor the functionality of our
evolving designs. Unit tests for components and the mission scenarios used for functional and software testing are
implemented using MATLAB’s Unit Test Framework. A Jenkins automation server runs all the tests every night. This
allowed us to assess every day’s changes to the code over a wide range of mission scenarios.

The goal of the functional test plan is to create a comprehensive sequence of tests. To this end, we define three
main categories: 1D, 3D, and Retargeting (RTG). 1D missions are the simplest kind. Here the vehicle is commanded
to fly vertically up to a specified altitude with a certain velocity and then come straight down. No lateral movement is
involved in these simulations. In a 3D mission the vehicle climbs vertically to a desired altitude with a certain velocity
and then it is commanded to land at a specific position. A retargeting mission evolves similarly to a 3D one, however
here there is a change of target while the vehicle is in the descent phase. The aircraft can be redirected to an alternative
target or back to the launch site. All three scenario classes are tested in nominal, robust, or fault conditions. A nominal
scenario assumes that dispersion and noise levels are within the expected range, while robust scenarios include higher
than expected noise, dispersion and wind. A fault scenario is characterized by a mid-flight change in the performance
of the propulsion system. That is a combination of an unexpected loss of power from the jet engine and reduced control
vanes tilt range.

As an example, Figure 9 shows how the trajectory generation changes with different mission scenario options.
The solid line represents the actual trajectory flown by the aircraft. The dotted lines are the optimal trajectories as com-
puted in real-time by the solver, where different colors are used for different trajectories. The red, green and black dots
on the ground are the takeoff, landing and emergency pads respectively. The glideslope constraint is depicted as trans-
parent pink cones around the takeoff and landing pads. Figure 9a depicts the trajectory evolution for a nominal case
in which the vehicle climbs vertically to 100[m] with a landing target of [U p, East, North]> = [0, −100, 50]>. Fig-
ure 9b instead represents the trajectory evolution when a new landing target ([U p, East, North]> = [0, −40, −40]>)
is commanded 25[s] into the flight. New trajectories are computed and the vehicle deviates from its original path
to match the retargeting goal. Figure 9c depicts the same scenario, but after the retargeting there is an engine
fault. Specifically, at 33[s] into the flight the engine’s thrust range goes from [Tmin, Tmax]> = [130, 900]>[N] to
[Tmin, Tmax]> = [300, 700]>[N], while the control vanes’ deflection range goes from [δ̂min, δ̂max]> = [−30, 30]>[deg]
to [δ̂min, δ̂max]> = [−10, 10]>[deg]. Compared to Figure 9b an additional trajectory (green dotted line) is computed to-
wards the end to account for the change in engine performance. A video of this simulation is available on our website.2

Finally Figure 9d illustrates the guidance algorithm behavior when the wind blows during the ascent phase causing a
tracking error. The wind gust starts at 2[s] into the flight and lasts for two seconds. The speed and direction is 14[m/s]
towards the West. The wind causes the vehicle to drift from its straight ascent, hence the tracking error triggers a new
trajectory computation. Because of the strength of the wind gust in this case a second corrective maneuver is needed
to converge to the ascent target.

The optimal solver execution times on the FES and SVF for the mission scenario depicted in Figure 9d are
reported Table 1. It can be noted that, on average, the embedded CPU is about ten times slower than the Intel Core i7
8550U at 1.8[GHz] on which the FES was running during this test. Since they are both x86 CPUs and their clocks are
comparable, one of the possible cause may be the lack of AVX instructions on the Atom E3845. Moreover in some
sporadic cases the execution time on the OBC is in the order of two seconds. At the time of writing these effects, and
techniques to potentially speedup the solver execution, are under investigation. However, of our guidance and control
architecture is robust to longer execution times.

Table 1: Optimal solver execution times for the retargeting scenario with wind and engine fault

Median [s] Mean [s] Maximum [s] Minimum [s]

FES 0.07 0.07 0.15 0.04

SVF 0.59 0.77 2.53 0.34
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(b) Nominal retargeting scenario
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(c) Retargeting scenario with engine fault
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(d) Retargeting scenario with wind and engine fault

Figure 9: Mission scenario evolution

On Jenkins we perform the functional validation over 2576 mission scenarios. Specifically, 882 test cases for
1D missions, 1036 3D scenarios, and 658 retargeting cases. All of them divided in their nominal, robust and fault
variants. Jenkins is used also to automate real-time tests on the SVF and equivalence tests between FES and SVF. The
automation server provides a clean interface to check on the execution status and the final reports produced at the end
of a batch of tests. The pass fail criteria for every test is based on the position error, the vertical velocity, the tilt angle
and the angular rate norm at landing. If these values lie within a user defined range the test passes, otherwise it fails.
In a nominal scenario for instance we want the landing error to be within 1[m], while the targeted touchdown speed is
0.5[m/s] with 0.1[m/s] tolerance. An example for a subset of 3D mission scenarios is shown in Figure 10.
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Figure 10: Some of the plots included in the tests summary report

7.1 Dispersion Analysis

Other than simulating a wide variety of mission scenarios, we can leverage on the same testing framework to perform
sensitivity analysis. Here the focus is on how noise and plant mismatches affect our guidance and control architec-
ture. With the G&C settings fixed we change atmospheric and ram drag coefficients, CoP location, propulsion system
dynamics and sensor noise. Additional metrics considered in this tests are the impact of these dispersion in fuel con-
sumption, optimal solver iterations and failures. As shown in Figure 11 for instance, increasing sensors noise has a
negative impact on the landing accuracy and fuel consumption. However, none of the dispersion considered in this
analysis had a negative effect the optimal solver reliability.

Figure 11: Some of the plots included in the tests noise dispersion report

8. Conclusions

In this paper we presented the algorithms and the software framework developed under the ESA-FLPP program to
enable the use of novel G&C architecture for space applications. The results are encouraging and the software is now
ready for the flight test campaign that will start in Q3 2019.
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